Occultation Newsletter

Volume V, Number 10 January, 1993 ISBN 0737-6766

Occultation Newsletter

Volume V, Number 10

January, 1993
ISBN 0737-6766
Occultation Newsletter is published by the International Occultation Timing Association. Editor: Joan Bixby Dunham; 7006 Megan Lane; Greenbelt, MD 20770-3012; U.S.A. Please send editorial matters to the above. Send new and renewal memberships and subscriptions, back issue requests, address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to: Craig and Terri McManus; 1177 Collins; Topeka, KS 66604-1524; U.S.A.

FROM THE PUBLISHER

For subscription purposes, this is the fourth issue of 1992. It is the tenth issue of Volume 5. IOTA annual membership dues, including $\mathbf{O N}$ and supplements for U.S.A., Canada, and Mexico
$\$ 25.00$
for all others
30.00

Annual IOTA membership dues may be paid by check drawn on an American bank, money order, cash, or by charge to Visa or MasterCard. If you use Visa or MasterCard, include your account number, the expiration date, and your signature.
ON subscription (1 year $=4$ issues)
for U.S.A., Canada, and Mexico
for all others
25.00

Single issues are $1 / 4$ of the price shown.
Although they are available to IOTA members without charge. nonmembers must pay for these items:
Local circumstance (asteroidal appuise) predictions $\quad 1.00$
Graze limit and profile predictions (per graze)
Papers explaining the use of the predictions $\quad 2.50$
Asteroidal occultation supplements will be available at extra cost: for South America via Ignacio Ferrin (Apartado 700; Merida 5101-A; Venezuela), for Europe via Roland Boninsegna (Rue de Mariembourg, 33: B-6381 DOURBES; Belgium) or IOTA/ES (see below), for southern Africa via M. D. Overbeek (Box 212: Edenvale 1610: Republic of South Africa), for Australia and New Zealand via Graham Blow (P.O. Box 2241; Wellington, New Zealand), and for Japan via Toshio Hirose (1-13 Shimomaruko 1-chome; Ota-ku, Tokyo 146, Japan). Supplements for all other areas will be available from Jim Stamm (117891 N. Joi Drive; Tucson, AZ 85737; U.S.A.) for \$2.50.

Observers from Europe and the British isles should join IOTA/ES, sending DM 40.-- to the account IOTA/ES: Bartold-Knaust Strasse 8: 3000 Hannover 91: Postgiro Hannover 555 829-303; bank-code-number (Bankleitzahl) 25010030.

IOTA NEWS

David W. Dunham

Membership Roster: It is time to update IOTA's membership roster; a new edition is planned for distribution with issue 12 in late April. By the end of March, you should communicate any updates to the McManuses in Topeka to their address in the masthead. We especially want to include telephone and fax numbers, and e-mail addresses, of IOTA members and ON subscribers, to help with rapid dissemination of time-critical events such as astrometric updates of asteroidal occultation predictions. We have telephone numbers for most members from returned information forms; let us know if you do not want your phone number published in the roster. Updates can be sent by e-mail to the McManuses, as described in the next paragraph.
New Electronic Mail Addresses: On p. 224 of the last issue, I gave my Internet e-mail address. I have learned that a more robust address for outside users is: david_dunham@jhuapl.edu
This avoids specification of my host computer for email, which apparently is not known to some systems (a few users never were able to reach me at the previous address, although I could send messages to them). With both my first and last names specified, the e-mail system at Applied Physics Laboratory can find my host computer to route the message. If for some reason that doesn't work, it prints the message and it is sent to me by internal mail. The McManuses can also now be reached by e-mail; from Internet, their address is: 570-0611@mcimail.com
Either I.O.T.A. or CMcManus can be used in place of
the number preceding the "(1)", but the number is a more robust specification.
FAX We have purchased a FAX/Modem for our home computer. We expect to use it primarily for sending FAXes, but we can, by pre-arrangement, receive them. The FAX/modem will be using the same telephone line as the occultation line answering machine (301,474-4945). We do not have a way of sharing the use of the answering machine, and FAX/modem on that line except manually. We were offered some hardware that will monitor the type of call coming in and turn on the computer if it is a modem or a FAX, but that doesn't seem particularly practical for our machine. Our machine, a ZEOS 486/66, takes nearly a minute to start up when turned on, by which time most FAXes trying to send a FAX would have given up. We are still testing our FAX/modem. The modem part works fine. We wanted to use the FAX with WinFax Pro 3.0, but the installation program supplied with that software crashes before it finishes.
North American Asteroidal Occultation Supplement for 1993: Predictions of asteroidal occultations visible from North America during 1993, generated by Edwin Goffin, with events selected by Jim Stamm and charts annotated by David Werner, were distributed separately early this month, before the first event, rather than with the last issue, as stated in that issue.
Graze Supplements for 1993: Eberhard Riedel in Germany has used the coastline/border data supplied by me, and his own graze calculations, to generate maps and tables for 1993 hemispheric grazing occultation supplements in a form very similar to those that I have produced during the past few years. The tables do not include Z.C. numbers or double-star data, so I plan to write small programs to read the tables (that were supplied as ASCII files on disk) to add these data as soon as this issue of $\mathbf{O N}$ is completed. You should be receiving the graze supplement for your hemisphere within about two weeks, probably with the next issue, as noted at the end of this article.
Use of the Hubble Space Telescope (HST) by Amateur Astronomers: A news note inviting amateur astronomers to submit proposals to use HST was published on p. 14 of the February issue of Sky and Telescope. The annual April 30th deadline was mutually agreed upon by Steve Edberg, chairman of the (HST) Amateur Astronomers Working Group, and the Space Telescope Science Institute. A form and
useful information for writing amateur astronomer HST proposals are available from the Amateur Astronomers Working Group; c/o AAVSO; 25 Birch St.; Cambridge, MA 02138.
Change in ON Production: IOTA member Tony Murray in Georgetown, GA, said that he could duplicate ON at the print shop where he works, and include a cover, for less than we can duplicate it in this area, so this issue will be copied by him. Joan and I thank him for these efforts. Also, this issue will really be distributed from Topeka, KS, rather than from Greenbelt, MD; we thank the McManuses for their work with this.
Next Issue: The main purpose of this issue is to provide IOTA's information about planetary and asteroidal occultations during 1993. Extra work of updating predictions of occultations by (4179) Toutatis, other work, and the holidays prevented me from preparing the 1993 asteroidal occultation data before the start of 1993. The next issue will be distributed in about two weeks and will include important but not as time-critical articles and information that were not included in this issue. Unfortunately, just before printing this issue, the hard disk controller on our new PC misbehaved. Joan managed to recover the critical ON files and print this issue, but we will not be able to optimize the page layout of this issue as well as we would like. Because of the volume of material and our delayed schedule, we are effectively breaking up this issue into two issues, so that the next issue will put us approximately back on schedule. The issue after the next one, that is. \#12, will contain information about occultations during the June 4th total lunar eclipse. If you plan to submit an article for that issue, we should have it by the second week of April.

CORRECTIONS TO ON 5, (5) and (9)
On p. 243 of the last issue, the 3rd sentence of the first full paragraph in the right-hand column should be "SAO 76225 should read SAO 76255". Also, 2 lines above that entry in the table on p. 118 of ON 5 (5), SAO 975990 should read SAO 075990.

A SOURCE FOR TIMEKUBES

Bob Nederman

As mentioned on p. 223 of the last issue, Tandy Corporation is no longer distributing the easy-to-use time source, the Weatheradio-Timekube, and by now has probably sold off all their remaining units in stock. My company, Astronomical Innovations; P.O. Box 14853; Lenexa, KS 66285, has a supply of 500 of these astronomically useful radios. We are selling them for $\$ 22.95$ plus $\$ 2.05$ for shipping, for a normal order of $\$ 25$ per unit, substantially less than Radio Shack's normal ($\$ 39.95$ pre-close-out) retail price; a check or money order should be in USA dollars payable to Astronomical Innovations. Orders can be placed by telephone at 1-913-894-5775. Inquire about overseas shipping, which will generally add about \$5 to the cost. Our supply should satisfy the astronomical community for 2 or 3 years, after which time Tandy Corporation may start selling the Weatheradio-Timekube, or an equivalent item, again. Until recently, Tandy Corp. did not realize that there was a continuing need for Timekubes in the astronomical community.

SOLAR SYSTEM OCCULTATIONS DURING 1993

David W. Dunham

General: My predictions of occultations of stars by major and minor planets, and by two comets, for 1993 are given in two tables whose contents are described in my articles about predictions of Solar System occultations for 1991 and 1992 in ON 5 (2) and in ON 5 (6). Most of the asteroidal occultation prediction material distributed by IOTA was prepared by Edwin Goffin in Belgium and is discussed in the third section. Sources of the predictions, other information, including stellar diameters (when significant), and notes about individual events, are given in the last sections.
For 1993, my annual Sky and Telescope article on planetary occultations was published in the February issue, pp. 76-77. Since that article is now limited to only North American events, and no good occultations of major planets occur there, the article was entitled
"Asteroid Occultations for 1993". Since there were no events in January, and Sky and Telescope's January issue was full, they decided to run the article in their February issue. ON was referenced for events outside of North America.
Reporting Observations: Reports of observations of any of these events should be sent to Jim Stamm; 11781 N. Joi Drive; Tucson, AZ 85737; U.S.A. (see his article elsewhere in this issue). Report positive or negative observations made under good conditions, but clouded-out attempts need not be reported. If a definite occultation is seen that could use some analysis for comparison with others, also send copies of the report to me at 7006 Megan Lane; Greenbelt, MD 20770; U.S.A., and to the chairman of the International Astronomical Union's (I.A.U.) Commission 20 Working Group on Predictions of Occultations by Satellites and Minor Planets, who is Lawrence Wasserman; Lowell Observatory; Mars Hill Road, 1400 West; Flagstaff, AZ 86001; U.S.A. Alternatively, observers may send their reports to their local or regional coordinators, who can then send the results to Stamm, and, when appropriate, to Lowell Observatory. The addresses of the regional coordinators are given in "From the Publisher" on p. 255 of this issue. Forms for reporting the observations can be obtained from Stamm or from the regional coordinators. Please indicate on the forms to whom copies are being sent. These forms are preferred, but the forms of the International Lunar Occultation Centre (ILOC), or the equivalent IOTA/ILOC graze report forms, can be used for reporting timed occultations or appulses. The main difference from reporting lunar events is that the name of the occulting body should be written prominently at the top of the form, and the report should be sent to neither ILOC in Japan nor to Richard Wilds. Also, if the asteroid is visible, the time that it merged with the star to form one apparent object, and the time the two were again noticeably separated, should be reported, with an estimate of whether the asteroid passed north or south of the star, if possible. Copies of the ILOC forms can be obtained from ILOC, from the IOTA secretary-treasurer (the McManuses in Topeka, KS), or from Richard Wilds; 3630 SW Belle Ave.; Topeka, KS 66614; U.S.A.
Event Selection; I made computer comparisons of my combined catalog with ephemerides of all of the major planets, comet P/Swift-Tuttle, the giant comet

P/Schwassmann-Wachmann 1 (P/Sm-Wm-1), and all minor planets for which Edwin Goffin predicted (see section below) at least one event under the selection conditions that we used for the main part of the North American Asteroidal Occultation Supplement for 1992: The star must be brighter than mag. 12.6; the magnitude drop must be at least 0.5 ; and for angular diameters smaller than 0.021 , the star must be brighter than mag. 5.1; 0.021 to 0.050 , brighter than mag. 6.1; 0 ".051 to 0.0060 , brighter than mag. 7.1; 0.061 to 0.070 , brighter than mag. 8.1; and 0". 071 to 0.079 , brighter than mag. 9.1. In a few cases, these conditions were violated, such as for interesting objects (mainly, unusual light curves that may indicate duplicity) like 44 Nysa, 288 Glauke, 624 Hektor, 1220 Crocus, 2060 Chiron, 3123 Dunham, 5145 Pholus, and the two comets mentioned above. In a few cases, stars just slightly fainter than these limits were accepted when Goffin's prediction indicated that the path might pass over areas with large numbers of observers. The numbers of the minor planets included in my combined catalog searches included 2-4, 8-13, 15, 16, 18-20, 24, $27,30,31,44-46,49,51,52,56,58,59,70,75,78$, 80, 85, 87-9, 97, 105, 107, 114, 141, 144, 146, 156. 171, 176, 181, 183, 203, 206, 216, 227, 236, 238, 258, 288, 303, 304, 324, 354, 357, 358, 407, 409, 410, 426, 444, 449, 451, 498, 511, 521, 532, 554, 566, 596, 624, 638, 654, 680, 704, 709, 712, 735, $772,776,895,910,1220,2060,3123$, and 5145. Most of these asteroids were selected because occultations by them had been found earlier by Goffin or by Lawrence Wasserman at Lowell Observatory. For many of the asteroids numbered in the high hundreds, those mainly with angular diameters less than 0.08 , the searches were not performed for the whole year but only for a period of a few weeks centered on the date of events found by Goffin and Wasserman. In addition, Fresneau Astrographic Catalog (FAC; contains stars to 13 th magnitude from declinations $+4^{\circ}$ to $+32^{\circ}$) comparisons were made for $3,10,45,52,87$, 107, 146, 511, 2060, 3123, 5145, and P/Sm-Wm-1. No FAC searches were done for some interesting objects simply because the ephemeris of the object remained outside the declination range of the FAC during all of 1993.
Note that 1 Ceres was not included in the searches. There is one 1993 prediction of an occultation by Ceres listed in my article in ON 5 (8), p. 205, where
a note discusses the extreme difficulty of the event, such that there is no need to include it in the main 1993 list in this issue.
Asteroidal Occultation Predictions by E, Goffin: The 1993 Asteroidal Occultation Supplement for North American Observers, prepared by Edwin Goffin with finder charts annotated by David Werner, were distributed separately early this month for IOTA members and ON subscribers in North America. Copies of Goffin's predictions and charts applicable to other parts of the world were sent by Jim Stamm a few months ago to regional coordinators for distribution to members and subscribers in their regions. For his 1993 predictions, Goffin converted his software to J2000 and used the new Positions and Proper Motions (PPM) J2000 star catalog, augmented with some other catalogs such as the FK5 and my version of the combined Lick-Voyager catalogs converted by him to J2000, rather than my Combined Catalog (CC). For a few asteroids, Goffin also used my version of Fresneau's Astrographic Catalog (FAC) that he converted to J2000. In a few cases, Goffin found occultations of PPM stars that are not in CC. For these, I converted Goffin's J2000 positions to B1950 and manually edited datasets to compute these events, usually successfully. In spite of the different catalogs and systems (my software and catalogs are still B1950), most of our predicted events are in common, and our predicted paths for the common events are generally (but not always) in good agreement. Consequently, we need to publish only a few finder charts in the regular issues of ON, since they have already been distributed with Goffin's predictions. In a few cases, we may publish 1° charts for some of the more crowded star fields on Goffin's charts, to facilitate locating the star to be occulted (the "target star"). These will be published alone, to be used in conjunction with Goffin's broader--field charts. Remember that the 1° charts are generated mostly from FAC. They are not needed as much for 1993 as they were for 1992, since Goffin has blown up many of the crowded fields of his plots to prevent this problem.
Comparison with the True Visual Magnitude Atlas (TVMA) often shows that some FAC stars are brighter, fainter, or very faint relative to their plotted magnitudes, indicated with B, F, or VF, respectively. " N " indicates that the star is not shown in TVMA. Of the events found by Goffin that I tried to com-
pute, I failed for only one occultation, an occultation of 6.4 -mag. PPM 574869 ($=$ SAO 207178) by 680 Genoveva that Goffin predicted for Australia on August 24th. My calculation shows that the closest approach will occur a day earlier with the asteroid missing the star by 4^{\prime}. We both used orbital elements from MPC 16391, so this discrepancy remains unexplained.
Most of the PPM stars have SAO numbers, which I prefer to use, considering the more widespread availability of the SAO catalog. Also, Goffin assigned sequential numbers to some of the catalog sources, including the FAC, where the stars remain unnumbered in my version. For the Lick-Voyager catalogs, DM numbers are often given (especially for L 3 and L 5 (Lick-Uranus and Lick-Neptune) stars in Sagittarius and Capricornus. Goffin only gave the four least significant digits of the DM numbers of these stars, most of which are from the Cordoba Durchmusterung (all Lick DM numbers south of -22°), where the numbers are all in the 10.000's for stars in Sagittarius and Capricornus. So 10,000 needs to be added to the DM numbers for these stars in Goffin's predictions, for example, for most of the stars occulted by 24 Themis.
Explanation of Data in Tables 1-3: A complete explanation of the data in Table 1, and a partial explanation (actually, covering most of it) of the data in Table 2, was given in my article, "Solar System Occultations during 1991", in ON 5 (\#2, December 1990), starting on p. 39. The explanation of the rest of the Table 2 data was given in my article, "Solar System Occultations during 1992", in ON 5 (\#6, December 1991), starting on p. 132, and an explanation of Table 3 starts on p. 133 of the same article.
Local Circumstance/Appulse Predictions: Joseph E. Carroll; 4261 Queen's Way; Minnetonka, MN 55345; USA, computes the IOTA appulse predictions for all IOTA members. Note that the star source code logic of this program has not been updated, so that the source codes in the appulse predictions will sometimes differ from that given under \underline{S} in Table 2 described above. In case of disagreements, use the Table 2 code. Hans-Joachim Bode distributes similar predictions to IOTA/ES members. The format of these predictions is nearly self-explanatory and contains virtually all of the information that an observer needs. Columns headed D and S following the SAO number
give the double star code and star position source code (but see the remark above), respectively. Next are the star's DM/ID No., then the star's MAG (visual mag.). OCC. DMAG (occultation magnitude drop), and DUR SEC (central occultation duration in seconds). This is followed by the U.T. and distances (in arc seconds, kilometers on the sky plane, and in terms of object diameter) of local closest approach. The distances are positive if the asteroid passes north of the star (this means that the path would be south of the observer's location). The elongation (ELG, angular distance from the star) of the Sun and Moon are given, as is also the Moon's percent sunlit (PSNL).
World Maps: World maps by Mitsuru Sôma are published here only if the event is not included in Goffin's predictions; or if the star is mag. 8.0 or brighter; or if the star is double, and I have drawn a line showing the 2 nd component path; or if there is more than about 0 " 5 discrepancy with Guffin's prediction; or if there is a recent astrometric update. The charts show the Earth as seen from the asteroid at the time of the event; the hatched curve marks the sunrise or sunset terminator, with hatches on the night side.
Regional Maps: The three regional maps showing quarterly Solar System occultations between latitudes $+65^{\circ}$ and -50° starting on p. 264 are like the ones for the Toutatis occultations starting on p. 237 of the last issue, rather than like the old quarterly maps, such as the ones starting on p. 251 of the last issue. That is, except for some of the occultations by major planets, they will have time lines at 2 -minute intervals, but will not have longitude or latitude tick-marks or labels, and the paths will be hand-labelled. "Time lines" that seem out of sequence, or slant the wrong way, are moonrise or moonset lines. The enclosing rectangles will have the same latitudes and longitudes, and the plots are still false projections with horizontal and vertical scales both linear to facilitate plotting or measuring of coordinates. The charts cover the 4 months from February through May, since this issue is too late for the January events, and ON 5 (12) needs to be distributed in time for the June 4th lunar eclipse.
Finder Charts: Previously, I produced 3° and 1° charts for many events not predicted by E. Goffin. I have not had time to regenerate this capability since losing access to the necessary hardware last September. I plan to produce unlabelled star charts, which can be manually labelled, in time for the next issue.积
 ェ二゙

\qquad

\qquad －

 － $\mathrm{K}_{\mathrm{N}} \mathrm{N}$
 리 0 O

2
leorén

I

 ゅo -

lade Parta^{-}

っ気
$\stackrel{\sim}{N}$

ニM сøoim 0â＇

4 5

जロ m

ぶ
மю

Unvuv nu

 М№w年

$\operatorname{lable}_{\text {Part }}{ }^{2}$

Planetary Occultations 1993 Feb. - May

Planetary Occultations 1993 Feb. - May

Priority List; A priority list of events most likely to have last-minute astrometric updates will be given in the next issue.
Occultations by Major Planets; I have included all occultations of major planets given by L. Wasserman, E. Bowell, and R. Millis in Astronomical Journal (AJ) 103 (103), p. 2089, as well as a few additional events that my search revealed. The occultations by Jupiter will be very difficult; I included them only because they were listed by Wasserman et al. No occultations by Saturn were found, but some very difficult events, perhaps visible in infrared bands with large telescopes, are given by Bosh and McDonald in AJ 103 (103), p. 983. Similarly, some difficult occultations of faint stars by Uranus and Neptune are given by D. Mink and A. Klemola in AJ 102, p. 389. Possible occultations by Pluto or by Charon are listed by D. Mink, A. Klemola, and M. Buie in AJ 101, p. 2255. One of the best Pluto occultations of the rest of this decade, involving a 12.4 -mag. star possibly visible from Japan or eastern Australia, is predicted to occur on October 3rd. Wolfgang Beisker and some other members of IOTA/ES are making plans to try to observe the event from Australia. Unfortunately, the small elongation from the Sun will make last-minute astrometry difficult, but Pluto's motion is so small that a good prediction may be possible from plates taken a few months before when the elongation is larger.

Notes about Individual Events: No notes are given for events in January, since this issue will unfortunately be distributed after those events.
Feb, 4: This is the giant periodic comet Schwass-mann-Wachmann 1, in a nearly circular orbit beyond Jupiter: its diameter is only a guess. In December, the comet underwent an outburst, and in late January, it was still brighter than usual, but still much fainter than the star. Dimming in the coma may occur within one or two hundred km of the path, whose location is quite uncertain due to the AC source for the star's position and the object's relatively large distance from the Earth (so the event might occur anywhere in North America). A recent position for the star will probably be obtained before the event to improve the prediction. I will try to make a finder chart for the star before the event, but distribution of it to potential observers will be a problem, and may be possible only by FAX.
Feb. 16. Chiron: Chiron is also apparently a giant
comet nucleus, although at its greater distance, it is not as active as Schwassmann-Wachmann 1. Like the Feb. 4 event, the prediction is very uncertain due to the AC source for the star's position, so an update of the star would again help. The world map shows that the event could be visible almost anywhere in the Pacific Ocean, eastern Asia, or Australia.
Feb. 25: Jupiter will have a negligible 0 " 12 defect of illumination.
Feb. 26, Juno: The two occultations by Juno on this date are predicted by E . Goffin to occur over $\mathrm{I}^{\prime \prime}$ southeast of my paths. The first event, with a very small magnitude drop, would normally not be included, but it is presented here because of the other more favorable event an hour later.
Notes about individual events after February will be given in the next issue.

Table 3. Stellar Angular Diameter information

OCCULTATION OF SAO 181281 BY (804) HISPANIA ON 1992 MAY 5

This occultation was observed by Keith Vincent at Havelock North, New Zealand (duration 11.4 seconds); Jeff Byron, Sydney, N.S.W., Australia (duration 7.5 seconds); and Colin Bembrick, Bathurst. N.S.W. (duration uncertain, 2.5 to 5.5 seconds); details are given in Graham Blow's article on pages 13 and 14 of Circular CQ $92 / 2$ (September 1992) of the Occultation Section of the Royal Astronomical Society of New Zealand, from which the figure below is reproduced.

ASTEROID (MAINLY TOUTATIS) NEWS

David W. Dunham
Predictions of occultations by (4179) Toutatis during its close approach to the Earth were given in an article starting on p. 233 of the last issue. None of the Toutatis occultations is known to have been observed. The weather was bad in most of North America for the events that occurred there, and I have heard of only a few appulse observations. I got the first orbit updated with radar data from Don Yeomans at the Jet Propulsion Laboratory (JPL) on December 7th, but I did not have time to make the changes needed to produce an
accurate ephemeris for an object passing so close to the Earth. By about December 12th, we worked out an arrangement where Don sent me a B1950 ephemeris by e-mail, and I was able to generate updated predictions with these data. The last updated ephemeris came on the 18th, but already by the 12 th , the radar-updated ephemeris was so good that the new radar observations showed that Toutatis was within about 1 km of its predicted distance. However, the cross-track error might be a little larger, so that successful occultation observations might be useful to supplement the radar data to provide accurate 3 -dimensional data for Toutatis that could be used to refine the predictions for future close approaches by this object (an improved position for the star, which is expected from Hipparcos satellite observations now in progress, would be needed for this). The updated predictions were near the centers of the uncertainty zones that I plotted on the three maps in the last issue. The only practical way to distribute the updated predictions before the holidays was by e-mail, and I sent predictions to about 30 observers around the world that way. John Spencer at Lowell Observatory copied some of my data to a larger e-mail list of mainly professional astronomers coordinating astronomical observations of Toutatis, and this established some new contacts that will be useful for future asteroidal occultations.

By late December, current star position errors seriously magnified the width of the uncertainty zones as Toutatis rushed away from the Earth. These errors (half-widths) are given in km in the table below:

Cat, sourceError		c or ${ }_{1} \mathrm{~s}$	$\stackrel{A}{A} 0$	$\begin{gathered} \text { R or } U \\ 0.3 \end{gathered}$	00.1	$\stackrel{5}{0.05}$	Hipparcos 0.002
1992	Dist.						
Dec. 8	0.024	18	11	5	2	1	0.04
Dec. 15	0.050	37	22	11	4	2	0.07
Dec. 23	0.100	74	44	22	8	4	0.15
Dec. 31	0.155	114	68	34	12	6	0.23

The star catalog source codes, or "Cat. source" in the table, for occulted stars were given under " S " in the 2nd table on p. 235 of the last issue. $\mathrm{C}=$ Astrographic Catalog, $S=S A O, A=A G K 3, R=A G K 3 R$, $\mathrm{U}=$ USNO Zodiacal Zone (Z.Z.), $\mathrm{L}=$ PPM highprecision subset, and $5=$ FK5. The distance of Toutatis in astronomical units is listed after the 1992 date. Since the radar data (spectacular radar images have been published in Science News, Space News, and elsewhere) show that the long axis of Toutatis is about 5 km , the problem of spacing enough observers
across the uncertainty zone to really catch the occultation is apparent with current star positions. Hopefully, when Toutatis makes an almost identical flyby in December 1996, Hipparcos (specifically, Tycho catalog) positions accurate to a few milliarcseconds will be available for most of the stars so that observers can be precisely positioned to catch the occultations. I presented the above material at a workshop on first results of the Toutatis flyby that was held at the University of Arizona in Tucson on January 4th, just before a meeting on hazards due to comets and asteroids that I also attended.
JPL's Steve Ostro recently showed me the impact that upgrades to the radars at Goldstone and Arecibo during the next two years can have on asteroid science. These will allow crude imaging of virtually all mainbelt asteroids larger than 200 km , and many of the inner-belt objects over 100 km . If enough observations can be scheduled, the upgraded radar data will also allow precision orbits to be determined for these asteroids. The better orbits coupled with good star positions determined from Hipparcos observations should make possible accurate prediction of occultation paths months and years in advance, without the need for last-minute astrometry.
Steve Ostro has said that the radar observations of Toutatis, which have a distance binning of 19 meters. have revealed no satellites or debris clouds. This might be expected for an asteroid that has probably made previous very close approaches to the Earth that would tend to perturb any possible satellites away from the week gravity of Toutatis. Nevertheless, on January 18th. Petr Pravec in the Czech Republic made a remarkable discovery - he found an object about 2.5 magnitudes fainter than Toutatis about 40" away and moving with a similar motion. The object was about $9 \mathbf{9 0}^{\prime \prime}$ away the next night, in spite of Toutatis' daily motion of over 1000". However, Alan Stern soon pointed out that the gravitational sphere of influençe of Toutatis would be at most $3^{\prime \prime}$. Brian Marsden solved the mystery when he found that another asteroid, 1992 YG3, that had been discovered in Japan on December 30th, did indeed pass near Toutatis in the sky on January 18th, and had a remarkably similar motion at that time.

CORRECTIONS TO GRAZING OCCULTATION PREDICTIONS

David W. Dunham

Northern-limits: During the last two years, darklimb northern-limit waxing-phase grazes, which generally occur from February through June, have usually been shifting south of IOTA's prediction version 80 M and 80 N by a few tenths of an arc second, and this is expected to continue during 1993. You should adjust your coverage to expect anywhere from no shift to a 0.5 southward shift of the shadow, using the vertical scale on the left side of your ACLPPP profile. I would recommend aiming for a location 0.3 south of the most interesting part of the profile (that is, the horizonal line that is closest, say within 0 ". 2 of, the most predicted profile points), but. if this is within 0.7 of the highest mountain top on the profile, you should be sure that someone observers from 0:7 under the highest mountain, to give a high probability of seeing something during the graze, and not just a miss (no occultation). In general, with 3 or more stations, it is best to try to cover a full are second of vertical distance, at least covering from highest mountain top to either 0.7 south of it, or 0.3 south of the most interesting region, whichever is farthest south.
Southern-limits: Dark-limb southern-limit waxingphase grazes near the lunar South Pole, in particular. from Watts angles 165° to 180° when the profile points are plotted as numbers from 3 to 7 , have also been shifting south, usually by 0.4 to 0.5 . These events usually occur in the evenings from October through March. Fortunately, there are large mountains in this region, so that the danger of seeing a miss is much less than for the smooth features usually found in the northern polar regions. There is some evidence that most of the southern Cassini region, where the profile points are mostly plotted as numbers from 2 to 4, is all a little farther south (higher) than our current ACLPPP predictions indicate, so this correction may affect waning-phase grazes, also, to Watts angle 187°.

REPORTS OF ASTEROIDAL APPULSES AND OCCULTATIONS
Jim Stanm
If you do not have a regional coordinator who
forwards your reports, they should be sent to me at:
lifil N. Joi Dr. Tucson, AZ 85737 USA. Names
and addresses of regional coordinators are given in
"From the Publisher" on Occultation Newsietter's
front page. All times in this report are UTC.

I have summarized all of the reports that I have received for the last half of 1990 in the following two tables and section of notes. Table lists the 1990 date, minor planet, occulted star, IDs of successful observers, and references to any notes. Table 2 lists the observer's ID, name, nearest town to location of observation, country (includes state or province for North America and Australia), and the total number of observations made in the period. The notes section details those events that included positive observations, or other significant information that could not be reported in the tables. I am not including notes on those observations that may have been spurious unless there is some sort of confimation, or the fact that something may have happened is relevant to anorher observation. Instead, I will place an asterisk (*) in the Notes column to indicate that I have received a report with more than a "no event....." in it.

1990 MLaos		Plaset	$\begin{gathered} \text { Cat } \\ \text { SNO } \end{gathered}$	$\begin{aligned} & 3 t a z \\ & 186805 \end{aligned}$	Observers Motes
Jul 02	8	Flora Iduna			Snchut Andid
Jut 04	176		Naci	+16 2602	BqaBulCandasGz
Jul 06	6	Habe	SNO	120195	SmchueAnd
Jul 09	39	Laetitia	SNO	119674	GriGrt
Jul 09	0	Flara	LlckV	5980	D1k
Jul 10	18	Pallomela	LekV	2003	Sinclap
Jul 10	$\%$	Semale	LekV	5597	
Jul 12	590	Coceavia	LickV	872	stginc
Jul 14	224	Oceana	SAO	183675	Sca
Jus 15	3	Juno	neg	-01* 1862	Orecoomit
Jul 19	679	Pax	LickV	6945	Hozton
Jul 20	211	Isolda	SNO	109396	D1k
Jul 28	1	flora	DM	-220 4543	AndSmeDik
Jul 28	1	Flora	Llaty	2309	Provntand Sime
Jul 28	1	Flara	SNO	186216	Daep rovnb
Jut 29	1	Flora	510	186209	Hon
Jul 31	732	FlilakI	MGS	+01* 2810	BlkStgAndSime
Jul 31	454	Mathesis	SNO	209137	BlkLapCal
Aug 09	10	Hyglea	necs	+000 2895	DikStg
Aug 09	679	Pax	SNO	186343	2
Aug 10	6	Samelo	LlckV	1633	BlkBrysinc
Aug 13	516	Anmarsela	SNO	189599	Cooovesmikni
Aug 19	30	Leda	AGG	+000 2856	Cookniovesalvib
Aug 23	145	Adeona	SNO	129413	Hut Sme
Aug 24	441	Bathilde	SNO	159572	Sta
Sep 01	1	Terpsichore	AGS	+2900648	Wabkel SamHonwel
Sep 02	679	Pax	SAO	186284	GartaviyzChI
Sep 02	704	Inceramila	ETC	895087	And
Sep 06	371	Campanla	NGK	+090 0045	Snd
Sep 07	501	Ushixidur	SNO	190967	Daeprobikloasme 3
Sep 08	0	Harmonia	SNO	190308	Wid
Sep 09	276	Adelnold	AESO	+1200511	Hak
Sep 09	260	Hubarta	LlckV	5131	sca
Sep 11	20	Mascalla	510	164484	sta

Table2. Comercyers and_locations_of evencs: Jul-Dea_ 1290 .

EARLY NEWS ABOUT LAST DECEMBER'S TOTAL LUNAR ECLIPSE

NOTES (Cont.) (Jul-Dec 1990):
4. Sep 24 (19) Fortuna. See (0.N.S(4), p.93). This is a corrected date.
5. Sep 30 patientia. After playing back his tape on Nov 07, Dik realized that he may have seen somthing. His eyepiece had fogged, but he recorded a "definite" fading of the star "by half its brightness." The times obtained: D at 15:25:26.8 and R at 15:28:04.7.
6. Oct 22 Eunike. Blk recorded a D at 18:03:07.6 and a R at 18:03:23.4 (No PEs applied) from Long. E $145^{\circ} 29^{\prime} 37.4^{\prime \prime}$, Lat. S $37^{\circ} 22^{\prime} 36.2^{\prime \prime}$. Elev. 260 meters. This shifts the nominal path about 0.7 arcsec south.
7. Oct 22 Juewa. 30 ooservers iBgsBilBnnBul CllDssErnGipHokKbjKlmKrtLgnLnt LooMrxpgkPnn ShkSplSprSzaTslTsoVbgVglVsoWbbWhkWls) from 25 stations moonitored this event. Wbb reported a positive event, with no other information, and Dss may have seen something.
8. Nov 17 Kleopatra. Harold Reitsema recorded an 11.0 sec. occultation from Dillon, Colorado.
9. Dec 09 Interamnia. See [O.N. 5(4), p.93].

Correction: The observation of AGK $+18^{\circ} 0627$ on Mar 13, 1990 (O.N.5(4), p.93] by David Dunham was from Westminster, Maryland.

David W. Dunham

Observers in the northeastern USA and southeastern Canada had a good view of this dark eclipse. Skies were mostly overcast in other areas with large numbers of observers, including the central USA, northwestern Europe, and southern Africa. The eclipse was dark, but there were large variations in brightness within the umbra. Ton Shoenmaker in the Canary Islands and I, observing from Sperry Observatory in Union, NJ, both estimated that the Moon as a whole was about 2nd magnitude near mid-totality, which compares with estimates as low as 4th magnitude for the 1963 December 30th eclipse that was blackened by the recent eruption of Mt. Agung. Although Pinatubo was a larger eruption, apparently the 1.5 years since its eruption has allowed much of the upper-level material that darkens eclipses to settle out of the atmosphere.
If the eclipse had been as dark as the one at the end of 1963, it might have been possible to time large numbers of occultations of 13th-magnitude stars. As it was, most 11 th-magnitude stars just merged with the Moon's edge without sharp events, like a bright-limb occultation. That was my experience using my $20-\mathrm{cm}$ telescope with image-intensified video in New Jersey, and also Wayne Warren's experience observing visually with a $40-\mathrm{cm}$ Cassegrain telescope at the Goddard Space Flight Center Optical Facility. We each timed about 15 occultations of mostly 9th and 10th-magnitude stars. The geometry of the star field for us was such that most of the events were reappearances. I had hoped to use the $61-\mathrm{cm}$ telescope at Sperry Observatory, but other workers there and I were unable to make a practical mechanical connection of my video camera/intensifier with the telescope, so I used my own telescope. The only graze that I now know was observed during the eclipse was the north-ern-limit one of 7.8 -mag. SAO 77019, recorded by Harold Povenmire and a few other observers near Melbourne, FL. Relatively large telescopes were used due to low altitude and some thin cirrus clouds.

SAO 96403 by Ninina 93 Feb 17

L2 305 by Jupiter 93 Feb 25

Anonymous by Juno 93 Feb 26, $4^{\text {b }}$

Anonymous by Juno 93 Feb 26, $5^{\text {b }}$

SAO 137736 by Io 93 Mar 2

Al 752275 by Melpomene 93 Mar 12 SAO 98690A by Peraga 93 Mar 15 SAO 98690B by Peraga 93 Mar 15

SAO 156367 by Iduna 93 Mar 18

SAO 95879 by Juno 93 Mar 22

SAO 156969 by Lumen 93 Mar 24

IOTA

The International Occultation Timing Association wae established to encourage and facilitate the observation of occultations and colipese. It provides prediction for grazing occultations of stars by the Moon and predictions for occultations of stars by asteroids and planets, information on observing oquipment and techniques, and reports to the members of obearvations made. IOTA is a tax-exempt organization under section 509 (a) (2) of the (USA) Internal Revenue code, and is incorporated in the atate of Texae.

The ON is the IOTA newsletter and is published approximately four times a year. It in also available eparately to non-members.

The officere of IOTA are:

President
Executive Vice Preeident
Executive Secretary
Secretary-Treaeurer
VP for Grazing Occultation Services
VP for Planetary Occ'n Services
VP for Lunar Oocultation Services
IOTA/European Section President
IOTA/ES Secretary
IOTA/ES Treaeurer
IOTA/ES Research \& Development IOTA/ES Public Relations

David W. Dunham Paul Maley Rocky Harper d Terri McManue Joe Senne Joseph Carroll Walter Morgan Joan Bixby Dunham Hans-Joachim Bode Eberhard Bredner Alfons Gabel Wolfgang Beisker Eberhard Riedel

The Dunhams maintain the occultation information line at 301-474-4945. Messages may also be left at that number. When updates become available for aeteroidal occultations in the central U.S.A., the information can also be obtained from either 708. 259-2376 (Chicago) or 713-488-6871 (Houston).

Observere from Europe and the British isles should join IOTA/ES, eending DM $40 . .-$ to the account IOTA/ES; Bartold-Knaust Strasse 8 ; 3000 Hannover 91; Pontgiro Hannover 555829 - 303; bank-code-number (Bankleitzahl) 250100 30. Full membership in IOTA/ES includes the supplement for European observers (total and grazing occultations) and minor planet occultation data, including laet-minute pradictions, when available.

The addresses for IOTA/ES are:

Addressen, membership and subscription rates, and information on where to write for predictions are found on the front page.

SAO 79187 by Mars 93 Mar 27

Anonymous by P/Sm-Wm-1 Mar 27 SAO 155934 by Interamnia Apr 1

SAO 211153 by Hektor 93 Apr 2

$\mathrm{C} 23^{\circ} 14467$ by Themis Apr 2

SAO 230574 by Euphrosyne 93 Apr 6

