Occultation (3) Newsletter

Volume III, Number 2
December, 1982
Occultation Newsletter is published by the International Occultation Timing Association. Editor and Compositor: H. F. DaBoll; 6 N 106 White Oak Lane; St. Charles, IL 60174 ; U.S.A. Please send editorial matters to the above, but send address changes, requests, matters of circulation, and other IOTA business to IOTA; P.O. Box 596; Tinley Park, IL 60477; U.S.A.

FROM THE PUBLISHER

For subscription purposes, this is the fourth and final issue of 1982.
O.N.'s price is $\$ 1.40$ /issue, or $\$ 5.50 /$ year (4 issues) including first class surface mailing. Back issues through vol. 2, No. 13, still are priced at only $\$ 1.00 /$ issue; later issues $0 \$ 1.40$. Please see the masthead for the ordering address. Air mail shipment of O.N. back issues and subscriptions is $45 \$ /$ issue ($\$ 1.80 /$ year) extra, outside the U.S.A., Canada, and Mexico.

IOTA membership, subscriptions included, is $\$ 11.00 /$ year for residents of North America (including Mexico) and $\$ 16.00 /$ year for others, to cover costa of overseas air mail. European and U. K. observers should join IOTA/ES, sending DM 20.-- to Hans-J. Bode, Bartold-Knaust Str. 8, 3000 Hannover 91, German Federal Republic.

IOTA NEWS

David W. Dunham

The successful efforts for the asteroidal occultations in November, as well as preparation for my annual articles for sky and telescope, and the comput-er-production of graphics for this issue, took much more time than I had anticipated, delaying publication of this issue to much later than I had hoped. By the time you receive this, I probably will be with my parents in Los Alamitos, CA, for the holidays and for the December 30th eclipse. Hence, it will be impossible to turn around any new requests for predictions for the eclipse. However, this should not be a problem, since a call for special eclipse prediction requests was published in the last issue. Unfortunately, most subscribers probably will receive this issue after Christmas, and some will miss it, having left home for the holidays. To the latter, I express my sincere apologies.

The November asteroidal occultations also delayed the mailing of the 1983 data needed by the grazing occultation computors. This, combined with the fact that the number of computors has dropped from seven to five this year, with no new computors becoming operational, means that some of the graze predictions for early 1983, especially the profiles, may be distributed late. We sincerely appreciate the efforts of the currently active computors, who each now are shouldering a larger burden than a year ago: Joseph Senne, Rolla, MO; Walter Morgan, Livemmore,

CA; Tom Webber, Auburn, WA; Hans Bode, Hannover, German Federal Republic; and Walter Nissen, Takoma Park, MD (who distributes graze predictions which I compute). Two prospective computors are nearing an operational status, and are likely to achieve it in time to help with the 2nd quarter 1983 predictions. This should help eliminate the recurrent problem of late predictions.

John Phelps has prepared a new roster of IOTA members and O.N. subscribers. It probably will be distributed soon after this issue. We have tried to include maps and finder charts for asteroidal occultations through the end of 1983 March in this issue, but we probably will distribute the next issue late in February. I promise to include the much-delayed article on new double stars, as well as another summary of grazing occultations, in that issue. In the meantime, we wish all of you happy holidays and clear skies for the December 30th eclipse.

SELECTION OF ASTEROIDS FOR OCCULTATION SEARCHES

David W. Dunham

Most astronomers who are comparing ephemerides of minor planets with star catalog data (usually by computer) to search for asteroidal occultations consider objects according to their expected size. Gordon Taylor recently has been conducting searches for about 180 asteroids with diameters greater than 100 km , while Andrew Lowe has compared ephemerides manually for several objects larger than this size, which Taylor apparently has not considered. My own work, described below, shows that there are over 250 asteroids with diameters greater than 100 km .

In Astronomical Journal 86, (12), 1974 (1981 December issue), L. Wasserman, E. Bowell, and R. Millis (of Lowell Observatory) limited their computer searches to 91 objects, most of them 150 km or more in diameter. They argued that these larger asteroids are less likely to deviate significantly from ellipsoidal shapes, so that it is possible to obtain more accurate mean diameters by fitting elliptical models to observations of occultations by these objects. This effect, however, depends on the unknown mass, composition, and material adhesiveness of the asteroid. Some large objects, such as (3) Juno with a diameter of 267 km determined from the well-observed occultation of 1979 December 11 reported in Astron. J. 86, 306, have outlines which can deviate substantially from ellipses. Also, the mean diameter is not the only parameter which we try to determine from occultations. We are also interested in
unusual shapes, such as those expected for contact binary models predicted for asteroids such as (624) Hektor; secondary events indicating possible satellites; and stellar parameters (angular diameter and close duplicity), all of which are independent of the asteroid size. Alan Harris also points out that the current indirect techniques for determining diameters of asteroids should be calibrated with occultations for some small objects as well as for the larger ones, and suggests that some effort be made to identify favorable occultations by some relatively small asteroids which might occur in areas with many observers.

Secondly, the Lowell astronomers point out that occultations by larger asteroids are more likely to be observed due to the wider ground tracks for these objects. There is no doubt that larger physical size helps, but the occultations that are most likely to be well-observed are those which are predicted most accurately in terms of the path width from last-minute astrometry, and this depends on the angular diameter of the asteroid. Hence, occultations by smaller asteroids can be accurately predicted and observed if they pass close to the earth, as Wasserman et al. admit. Consequently, I believe that the maximum possible angular diameter should be considered also when selecting asteroids for occultation searches, not just the physical size.

In the table, I have ranked the asteroids by both physical and maximum angular diameter. The rank is given in the first column. In the second, third, and fourth columns, respectively, the minor planet's number, diameter in km , and maximum angular diameter (computed for opposition at aphelion, assuming that the asteroid is in the ecliptic and the earth is exactly 1 A.U. from the sun) are given for asteroids ranked by physical size (third column). In the last three columns, the same information is given, respectively, for asteroids ranked by maximum angular diameter (last column). The physical diameters are usually those given in the TRIAD file as published in Asteroids (University of Arizona Press, 1979, T. Gehrels, ed.). During the last three years, the albedoes (ratios of reflected to incident light, from which diameters can be calculated if absolute magnitudes are also known) and/or types of several asteroids, for which only approximate data are given in TRIAD, have been determined. These usually involve objects ambiguously classified as CMEU, but which now can be assigned C, M, or the new P classification, which has the spectral characteristics of Mtype objects, but which are dark (and hence large for their brightness) like C objects. Using the latest information, Edward Tedesco, now at the Jet Propulsion Laboratory, has prepared tables of the types and diameters of all asteroids which probably have diameters of 100 km or more. Tedesco presented these results at I.A.U. Colloquium 75, "Planetary Rings," at Toulouse, France, just after the 18th General Assembly of the I.A.U. in Patras, Greece, where he gave me a copy of the tables, which I have used to update my files. When available, I have used diameters determined from occultation observations instead. If a diameter is not given in either Tedesco's tables or in TRIAD, one has been computed from the magnitude at unit distance, assuming a dark (class C) albedo. Approximate osculating orbital elements, used to calculate the minimum distances needed for the maximum angular diameters, were provided to me in machine-readable form by Conrad Bard-

RANK	NO.	$\operatorname{DIAM}_{K M}$	$\begin{aligned} & \text { ANG。 } \\ & \text { DIAM. } \end{aligned}$	NC.	$\begin{gathered} \text { DIAMe } \\ \text { KM } \end{gathered}$	$\begin{aligned} & \text { ANG. } \\ & \text { DIAM } \end{aligned}$
1	1	1025	0.6912	1	1025	$0 \% 912$
2	4	555	0.664	4	555	0.664
3	2	538	C. 664	2	538	0.664
4	10	443	0.333	324	256	0.450
5	2060	40 C	0.073	3	267	0.373
6	704	338	0.295	7	222	0.366
7	511	335	0.279	10	443	0.333
8	65	311	0.210	15	261	0.314
9	52	291	0.231	6	206	0.304
10	451	281	0.212	747	208	0.297
11	87	275	0.177	19	226	0.295
12	31	27 C	0.257	704	338	0.295
13	250	276	0.219	511	335	0.279
14	3	267	0.373	41	204	0.275
15	15	261	0.314	194	195	0.271
16	324	256	0.450	31	270	0.257
17	107	252	0.155	8	160	0.257
18	45	25C	0.229	344	147	0.257
19	16	249	0.227	18	148	0.256
20	13	245	0.251	1036	39.8	0.254
21	130	235	0.226	13	245	0.251
22	624	234	0.081	433	23.0	0.238
23	24	228	C. 179	532	217	0.235
24	165	228	0.167	88	222	0.232
25	19	226	0.295	52	291	0.231
26	153	224	0.131	45	250	0.229
27	7	222	0.366	16	249	0.227
28	88	222	0.232	130	235	0.226
29	532	217	0.235	12	135	0.226
30	702	217	0.144	250	270	0.219
31	423	209	0.148	164	111	0.213
32	747	208	0.297	89	168	0.213
33	6	206	0.304	451	281	0.212
34	41	204	0.275	9	168	0.212
35	386	203	0.199	65	311	0.210
36	154	201	0.149	54	177	0.209
37	121	201	0.137	654	112	0.201
38	48	200	0.143	29	199	0.201
39	375	20 C	0.150	386	203	0.199
40	29	195	0.201	372	196	0.199
41	334	195	0.103	56	142	0.198
42	76	196	0.156	173	169	0.197
43	372	196	0.199	356	157	0.197
44	194	195	0.271	132	86.3	0.194
45	409	194	0.193	521	136	0.194
46	94	191	0.144	409	194	0.193
47	185	188	0.187	393	117	0.188
48	241	187	0.148	185	188	0.187
49	92	184	0.129	405	126	0.186
50	96	183	0.153	105	129	0.186
51	776	183	0.174	36	124	0.185
52	361	181	0.119	78	144	0.185
53	790	178	0.134	70	153	0.185
54	54	177	0.209	419	126	0.184
55	22	175	0.149	247	143	0.183
56	49	175	0.172	14	155	0.182
57	120	175	0.123	410	142	0.182
58	690	175	0.148	20	140	0.182
59	804	175	0.167	187	143	0.181
60	1143	173	0.064	444	167	0.180
61	93	17 C	0.172	85	149	0.179
62	173	169	0.197	24	228	0.179
63	9	168	0.212	11	155	0.178
64	89	168	0.213	51	156	0.178
65	95	168	0.144	87	275	0.177
66	211	168	0.150	144	132	0.177
67	488	168	0.146	139	165	0.175
68	444	167	0.180	776	183	0.174
69	59	16.5	0.163	27	118	0.173

RANK	NO.	$\underset{K N}{\text { DIAM。 }}$	$\begin{aligned} & \text { ANG。 } \\ & \text { DIAM• } \end{aligned}$	NC.	$\underset{K M}{\text { DI AM. }}$	$\begin{aligned} & \text { ANG• } \\ & \text { DIAM } \end{aligned}$
70	139	165	0 0.175	49	175	0.1172
71	190	165	0.100	93	170	0.172
72	196	162	0.109	192	98.9	0.168
73	8	160	0.257	46	133	0.168
74	39	158	0.149	165	228	0.167
75	617	158	0.063	804	175	0.167
76	1583	158	0.055	556	146	0.164
77	356	157	0.197	471	145	0.163
78	47	156	0.144	59	165	0.163
79	51	$15 t$	0.178	111	156	0.162
80	111	$15 t$	0.162	694	94.6	0.162
81	117	$15 t$	0.113	216	128	0.162
82	354	156	0.147	23	118	0.162
83	11	155	0.178	712	128	0.162
84	14	155	0.182	42	104	0.162
85	238	155	0.130	313	108	0.157
86	911	155	0.056	455	101	0.157
87	70	153	0.185	76	196	0.156
88	137	153	0.144	675	137	0.156
89	146	153	0.137	107	252	0.155
90	536	152	0.094	796	88.3	0.154
91	420	151	0.990	96	183	0.153
92	849	151	0.133	97	109	0.152
93	168	15 C	0.094	21	114	0.151
94	381	15 C	0.114	211	168	0.150
95	85	149	0.179	375	200	0.150
96	18	148	0.256	39	158	0.149
97	344	147	0.257	154	201	0.149
98	566	147	0.099	22	175	0.149
99	556	$14 t$	0.164	84	86.6	0.148
100	349	145	0.120	423	209	0.148
101	471	145	0.163	241	187	0.148
102	78	144	0.185	690	175	0.148
103	187	143	0.181	141	117	0.148
104	247	143	0.183	145	137	0.147
105	56	142	0.198	354	156	0.147
106	410	142	0.182	5	116	0.146
107	758	142	0.111	488	168	0.146
108	159	141	0.108	47	156	0.144
109	20	14 C	0.182	779	111	0.144
110	1867	14 C	0.049	94	191	0.144
111	595	139	0.097	137	153	0.144
112	268	139	0.115	95	168	0.144
113	308	139	0.116	602	139	0.144
114	466	139	0.089	702	217	0.144
115	508	139	0.092	48	200	0.143
116	602	139	0.144	118	108	0.143
117	90.	138	0.119	387	113	0.142
118	360	138	0.130	554	104	0.142
119	2241	138	0.050	326	90.3	0.141
120	675	137	0.156	115	94.5	0.141
121	145	137	0.147	53	110	0.141
122	150	137	0.117	40	118	0.140
123	200	137	0.138	626	96.4	0.140
124	209	137	0.094	74	113	0.140
125	521	136	0.194	337	107	0.140
126	12	135	0.226	1021	96.4	0.139
127	618	135	0.098	80	84.2	0.139
128	104	134	0.115	68	128	0.139
129	596	134	0.128	114	131	0.139
130	46	133	0.168	200	137	0.138
131	212	133	0.102	121	201	0.137
132	144	132	0.177	50	88.3	0.137
133	171	132	0.105	146	153	0.137
134	184	132	0.096	156	109	0.135
135	772	132	0.107	751	113	0.135
136	1437	132	0.047	81	122	0.135
137	114	131	0.139	790	178	0.134
138	279	131	0.057	83	118	0.133

well in 1976. Apollo objects with perihelia less than 1 A.U. were not considered. These objects are very small and would require more complex calculations for their minimum distances. Since they pass very close to the earth, the minimum possible distance also would vary considerably as the orbital elements were perturbed by the planets.

It is interesting how some small Amor objects, such as (1036) Ganymed and (433) Eros, can pass close to the earth and have large possible angular diameters, while the large remote object (2060) Chiron has an angular diameter of only 0."073. Only the first 138 rankings are included in the table published here. I can supply a longer list upon request; the rankings were computed for 837 objects with diameters greater than 60 km or with angular diameters possibly larger than about 0.06. I found 256 objects with diameters of 100 km or more (only one, 1981 LK, is an unnumbered minor planet, a Trojan with a diameter of 120 km , assuming a low albedo typical of Trojans, rank 166, and a maximum angular size of 0.044, rank 732; orbital elements based on observations made in 1975 and 1981 are given in MPC 6468), and 591 with diameters of 60 km or more (six of these are unnumbered). 236 asteroids had maximum possible angular diameters of 0.1 or more, while 543 objects were found with maximum angular diameters of 0."06 or more (only one, 1969 OZ), is unnumbered, a main-belt asteroid with maximum angular size of 0.065 , rank 478 , and diameter 65.8 km , if it has an albedo typical of C-type asteroids; the orbit given in MPC 4716 is based on 3 observations spanning only 28 days in 1969). Since predictions from last-minute astrometry often have been accurate to only a few hundredths of an arc second, it seems that occultations can be predicted for many more objects than have been considered heretofore. I feel that predictions should be extended to some of these smaller asteroids, at least for the brighter stars. But for these objects, the ephemeris errors are generally larger than for the bright objects, possibly so large in some cases that searches for occultations would be meaningless. Also, the accuracy of last-minute astrometry for occultations of bright stars by the smaller (and consequently fainter) asteroids would be degraded by errors introduced by magnitude equation or compensating diffraction gratings. Last-minute astrometry is also hindered by the usually relatively fast angular motion of small but close objects, which also causes short occultation durations. Hence, it is often difficult to time such events to the necessary accuracy (preferably less than 3% of the central occultation duration), especially by visual means.

ASTEROIDAL OCCULTATIONS OF
 UNCATALOGUED STARS DURING 1983

Robert L. Millis, Otto G. Franz, Lawrence H. Wasserman, Edward Bowell, and David W. Dunham

The identification of additional occultations of uncatalogued stars by seven of the largest asteroids, found by scanning photographic plates at Lowell Observatory, was noted on p. 9 of the last issue. A list of 33 events during 1983, found during this search, has been submitted for publication in Astronomical Journal, along with a description of the method employed, and notes and a map showing the predicted tracks for some of the more promising events. Since.several of the events occur early in

1983，predictions for Janu－ ary through March are being published here prior to their appearance in Astron． J．，to give observers more time for planning．Events during the last nine months of 1983 will be published in the next issue，by which time they should have ap－ peared in astron．J．Some information about the two events most favorable for visual observers in North America，involving（52）Eu－ ropa on April 26 and（451） Patientia on September 14， will be given in Dunham＇s article on 1983 planetary occultations in the January issue of Sky and telescope． All of these events are in－ cluded in the planetary oc－ cultation appulse local cir－ cumstance predictions for 1983 now being distributed by Joseph Carroll．All events were found by the

first four authors at Lowell，but the predic－ tions listed here were calculated by Dunham． There is good agreement with Lowell calcula－ tions for most events，with some differences caused by slightly differing ephemerides．

The format of the two tables is the same as that for the other 1983 events listed on pages 10－13 of the last issue，with the following changes：The star number assigned by Lowell is given in place of the SAO number，since none of the stars are in either the SAO or AGK3 catalogs．The first four digits specify the Lowell plate，while the last two give its num－ ber on the plate．The spectral types of the stars are unknown，so that column is omitted． Note that $\Delta \mathrm{m}$＇s less than 1 will be difficult to detect visually．For these relatively faint stars，$\Delta \mathrm{m}$＇s less than 0.7 likely will be impossible visually．

The second table is shorter，since no informa－ tion about the stellar diameters is available． The type of all seven asteroids involved is C ． Although some of the brighter stars may be in the B．D．or C．D．catalogs，we have not checked this，so the DM No．column has been omitted． Also，we have not checked for stellar duplici－ ty，and measurements from Lowell plates are the source for all of the star positions （source L）．Positions from Astrographic Cata－ \log（A．C．）data are available for most of the stars occulted by（52）Europa，so comparison data and A．C．identifications are given for these stars．The first three A．C．numbers specify the equinox 1900 plate center（degrees of declination and hours and minutes of right ascension）of the Paris Observatory plate， while the fourth number is the star＇s number on the plate as given in the A．C．There is a rather large systematic discrepancy between the Lowell and A．C．positions，with the latter farther north（shifting the paths south）． Measurements of Lick Observatory plates，re－ duced to the FK4 via AGK3R reference stars， will result in better positions for some of these stars，and resolve the discrepancies．

Finder charts for some of these occultations will be published in this，and future，issues of o．n．The charts for the occultations by （52）Europa have been prepared from Paris A．C． data，which extend approximately to photo－ graphic mag．12．5．Underlined stars on the A．C．plots are stars in the AGK3，not double stars，which are underlined on the more fre－ quent AGK3 and SAO－based finder charts．Some regional maps also are published here．World maps by Sôma will be published when they be－ come avallable，probably in time to appear in this issue．

Notes about Individual Events

Jan．19：If the A．C．position for the star is used，the path misses the earth＇s surface to the south．

Feb．8：The A．C．path crosses South Africa and northern South America．

Feb．9：The A．C．path crosses northwestern

Australia and northern Africa.
Feb. 13: The A.C. path crosses no land in the southeastern Pacific Ocean.

Mar. 19: The A.C. path lies entirely within the Pacific Ocean, passing just north of Hawaii.

1978 TOTAL OCCULTATION TALLY

Joseph E. Carroll

The following two tables - one by country and one by individual - present the ordered counting of total occultations reported for the year 1978. In the individual list, the Japanese photoelectric observations (probably the Sirahama Observatory) and the McDonald Observatory observations (also photoelectric) are due to multiple observers. The leading lone observer, therefore, is K. G. Fuhr from Cape Town, South Africa, followed by Hays of the USA and Wieth-Knudsen of Denmark.

The values again were computed (as since 1975) via the formula: Value $=$ Total $+C \times$ Reappearances, where C is the ratio of total disappearances to to-

ances by the factor 2.75. (Country names as of 1978.)
In the table of individual observers, blanks for names occur where observations were listed on the
(text continues on page 29)

rix val	alue	ObSERVER	Location
	692.5	Photoelectric Jap	Japı
257	574.2	K. G. FUHR S	S. africa, Cape town
	459.7	Robert h. hays, Jr. U	U.S.A., MORTH, ILLINO
442	421.5	david evans, et al u	U.S.A., MCDOMaLD OBS., TEX.
	293.7	N. P. WIETH-KNUDSEN D	DEIMARK, TISVILDELEJE
	266.0	3 Vimcent riols	RHODESIA, SALISBURY
	240.5	alfredika do campo po	PORTUGAL, LISBON OBS
	207.5	T. 2 ro. J	japak,
	207.2	NOEL MUMFORD NE	nek lealand, palmerston nor.
1019	198.2	ROBERT CLYDE U	U.S.A., STREETSBORO, OHIO
1118	189.5	ROBERT LASCH U	u.s.a., greek valley arizona
1218	189.2		U.S.a., DENVER, COLORADO
1318	187.7	PAUL L. MCBRIDE U	u.s.a., GREEN FOREST, ARKANS
14	179.5	Y. kimoto J	japan, simagaha
	178.5	Robert h. Sandy u	U.S.a., kansas City, miss
16	178.5	BEN HUDCENS u	U.S.A., CLINTON, MISSISSIPPI
1717	174.0	jeak bourgeois	belgium, howtignes-le-tilleu
18	171.7	K blackuell	ENGLAND, MESTHAM, SUSSEX
1916	161.0	david herald	australita, canberra
20	147.2	A morrisby	RHODESIA, SALISBURY
211	142.7	RICHARD NOLTHENIUS	U.S.a., mountain vien, calif.
22	135.2	ambrosio juan cahponovo	argentika, buenos aires
23	134.5	james h. van muland	U.S.A., SAN JOSE, CALIF.
2412	129.5	david d. brown	CAmada, mCgill univ. obs.
2512	123.7	T. NIY.	Japan,
	123.5	HAKS-JOACHIM BODE G	Germany, hanhover
271	122.7	grahat L. blow med	new zealand, black birch
28	122.7	P ANDERSON	australia, brisbane
291	120.7	т. уnt.	JAPAK,
	116.5	Y. KOM.	japan,
	110.0	A. suzuki	japan, sirahama
	107.7	c. herdhan	new zealand, auckland
	106.7	F 2EhNDER	SWIT2ERLAND, BIRMENSTORF
34	104.7	don m. Stockbauer	u.s.a., victoria, texas
35	99.5	Joseph E. Carroll	U.S.A., MIMNETONKA, MINNESO
36	92.5	E SAMYER	mAMIBIA, WINDHOEK
37	91.0	LIONEL E. HUSSEY	new zealand. Christchurch
38	86.5	steve J. zVara	U.S.A., WHITTIER, CALIFORNLA
39	85.7		netherlands, Streefkerk
40	83.0	JoSE ripero osorio	SPAIN, MADRID
41	82.0	CLIFFORD J. BADER	U.S.A., WEST CHESTER, PA.
42	80.5	paul j. newhan	U.S.A., dallas, gahland. TEXAS
43	78.7	L PAzzI	S. AFRICA, NIGEL TVL.
	76.5	james l. ferreira	U.S.A., FREMONT, CALIF
45	76.2	J dormanget	BELGIUM, BRUSSELS, R. OBS.
46	75.0		u.S.a., denver, Colorado
47	74.0	douglas hall	Emgland. Leicester
48	73.5	RICHARD BINzEL	U.S.A., St. PAUL, MINESSOTA
49	72.0	alfred C. Webber	U.S.A.. Chadds ford, Pa.
50	72.0	H KRLM	S. africa, langebank
	68.0	richard radick	U.S.A., oakland. Illinois
52	65.7		Italy, RChE
53	63.2	y. ganexo	japan, tokyo
54	61.5	Glen rowe	NEW ZEALAND, GISBORNE
55	61.2		australia, cootamundra
56	61.2	P. maecraith	australia, magill
57	61.0	$\cdots \mathrm{BECH}$	deverkx, COPENHAGEN
58	61.0	B BRIDCE	australia, brisbane
59	60.0	framk olsem	U.S.A., MARION, IOWA
60	59.7	JOSEPH 200A	U.S.a., maple park, ill.
61	56.5	ROBERT M. BOLSTER	U.S.A., ALEXANDRIA, VA.
	55.5	E karkoschka	germany, stuttgart swabian
63	52.7	jorge polman	brazil, mecife
64	52.0		ttaly, rohe
65	50.5	h. F. daboll	U.S.A., St.Charles, ILL.
66	49.5	HARRY WILLIAHS	NEW ZEALAND, AUCKLAND
67	49.5		australia, brisbane
68	49.0	juak d. SIlvestre	PHILIPPINES, QUEZON CITY
69	45.7	a macdomald	australia, TOWnsville
70	45.0		Spain, san ferkando obs.
71	43.7		NETHERLANDS, ZOETEFAEER
72	43.7	GERRY ALLCOTT	NEW ZEALAND, AUCKLAND
73	43.5	cesario e. thanas	PHILIPPINES, QUEZON CITY
74	42.2	Radick and lien	U.S.A., OAKLAND, ILLINOIS
75	42.0	ezequiel cabrita	portugal, lisbon observatory
76	42.0	Jak hers	S. AFRICA, RANDBUAG
77	39.5	L Brumdle	EMGLAND, haymards heath
78	39.5	tom vak flandern	u.S.A., Mashington, d.C.
	38.5		S. Africa, johanmesburg
80	38.2	harnd marx	germany, korntal-hunchingen
81	38.0	N white	U.S.a., flagstaff lowell obs.
82	36.7	dAvid brock	NEW ZEALAMD, AUCKLAND
83	36.5		U.S.A., MOROMGO VALLEY, CALIF.
84	35.5	W MELLOR	EMGLAND, SHEFFIELD
85	35.2	martim knitsch	GERHANY, HANMOVER
86	34.2	V Protic-benisex	yugoslavia., belgrade obs.
87	34.0	h. F. Cochram	U.S.A., BROWmOOD. TEXAS
88	33.2		U.S.A., WISCOMSIN, UNIVERSITY
89	33.0	a salazar	SPAIN, SAN FERMANDO OBS.
90	33.0	J. POCODA	CZECH., OHCHOUC OBS.
91	132.7		brazil, belo horizowte
92	32.7	E halbach	U.S.A., MILWAUKEE, WIS.
93	32.5	VICTOR J. SLABINSKI	U.s.a., arlington, virginia
94	32.0	\checkmark PASCOLI	ITALY, UDIME
95	532.0	JOHK S. KORINTUS	U.S.A., PALM BAY, FLORIDA
96	631.7	B. mikoliu	new zealamd. palmerston no.
97	731.0		U.S.A., DUBLIN, CALIFORNIA
98	830.7	O MIDTSKOGEM	mormay, tramby
99	930.7		RHODESIA, SALISBURY
EMG	MG 0.0	ashampstead	40
100	030.3	eduardo valentin przyby	argentima, rafaela
101	129.7	5 ImCIONG	Philippines, hanila
102	29.7	T. Sto.	Japan,
103	329.5		EMGLAND. SHEERNESS
104	28.7	MICHAEL C. ASHLEY	australia, canberra
105	528.7	david steicke	australia, hurray bridge
106	628.7		EIRE, MEW ROSS
107	$\begin{array}{ll}7 & 28.5 \\ 88.5\end{array}$	mark taylor	EMGLAND, WAKEFIELD EMGLAND, WIMBORNE

total reap 409162 $\begin{array}{ll}409 & 162 \\ 324 & 143 \\ 255 & 117\end{array}$ 313
145 313
145
154
156

99
132
95

RNK VA	alue	OBSERVER	LOCATION T	total reap		rnx value		OBSERVER	Location	total reap.	
109	28.2	t. takenura	japan, kURASIKI	16	7	218	10.0	D PETIITT	EmGLand, Carlisle	10	0
110	28.0	Roger h. Giller	australit, ergadine	28	0	219	10.0	G taylor	emgland, mear hersthonceux	10	0
111	28.0	J SHITH	u.s.a., wico, texas	28	0	220	10.0		italy, floremce	10	0
112	27.7	maurice stoker	HEW ZEALAND, AUCKLAND	26	1	221	10.0	jahes e. broors	U.S.A., CHATHAK, VIGINIA	10	0
113	27.5	0 Klintimg	demank, rimgeted	17	6	222	9.7		AUSTRIA, ST JOHAMN (TIROL)	8	1
114	27.5		italy, milan	24	2	223	9.7	P GOODwim	U.S.A., SHREVEPORT, LOUISIANA	8	1
115	26.2	A PIkhard	austria, vienma	21	3	224	9.5	${ }^{\mathrm{M}}$ ALOM	ISRAEL, YAVME	6	2
116	25.7	D. Hall	new zealand. black birch	10	9	225	9.5	W. KULLI	SWITZERLAND, KONIZ UWD LEYSIM	6	2
117	25.7		EMGLAND, BRACKIELL	17	5	226	9.5	madme h, warren jr.	U.S.A., GREEMBELT, MARTLAND	6	2
118	25.7	B SOULSBY	australia, canberra	24		227	9.2		U.S.A., MILWAUKEE, WIS.	4	3
119	25.5	george wingate	new Iealand, auckland	15	6	228	9.0	roger laureys	BELGIU, DIEPENBEEK	9	0
120	25.5	T. NHELAN	new zenland, tkorangi	22	2	229	9.0	paila	CZECH., PRAHA OBS.	9	0
121	25.2	D SCAMIDT	netherlands, huizen	13	7	230	9.0	E оtтo	GERANAY, EILENBURG	9	0
122	25.0	H Pachali	GERHANY, BERLIN MEUKOLLM	25	0	231	9.0		ITALY, RCHE	9	0
123	24.2		U.S.A. . WISCONSIN, UNIVERSITY	12	7	232	9.0	baray meizies	MEV ZEALAND, AUCILAND	9	0
124	24.0		U.S.A., YOUNGSTON, OHIO	10	8	233	9.0		U.S.a., SAN FRAMCISCO UNIV.	9	0
125	24.0	G. PATterson	WEW ZEALAND. CHRISTCHURCH	24	0	234	9.0	C perkall	u.s.a., west palh beach, fla	9	0
126	23.2		GERMANY, BORKEN - DILLICH	18	3	235	8.7		CAMADA, QuEbec	7	1
127	23.0	n thomas	MEW 2EALAMD, DUMEDIN	23	0	236	8.5		AUSTRIA, MISTELBUCH	5	2
128	22.7		dewalak, viby, Jutland	14	5	237	8.5		EmGland, yales, prestaty	5	2
129	22.7		EMGLAMD, LEEDS	14	5	238	8.2		U.S.A., TAMPA, FLORIDA	3	3
130	22.2	CARL GRUNNET	demamar, virim	17	3	239	8.2	david Liem	U.S.A., OMK.AND, illinois	3	3
131	22.2	RONALD W. CROSS	NEW 2EALAND, CHRISTCHURCH	17	3	240	8.0	sobra	czech. . PRAHA ObS.	8	0
132	22.0	1. v. freitas	BRAZIL. RECIFE	15	4	241	8.0	W caunter	EmGland, totmes devoh	8	0
133	22.0		EMGLAND. hal vern	22	0	242	8.0		italy, turin	8	0
134	22.0	A. W. DODSON	new zenland, otaki	22	0	243	8.0		netherlands, Cromimgen, xaptem	8	0
135	21.7	c canmon JR	U.S.a., SAN FRAMCISCO, Calif.	13	5	244	8.0	J.b. Mackie	new zealand, melson, stoke	8	0
136	21.7	WILLIMN J. WEStBrooke	u.s.a., san francisco, calif.	13	5	245	8.0	Ernesto v. Calpo	PHILIPPINES, QUEZON CITY	8	0
137	21.5	J MORGAN	EMCLAND, CAMBRIDGE OBS.	18		246	8.0	b martinez	PHILIPPIMES, MAMILA	8	0
138	21.2		austria, miener neustadt	16	3	247	8.0		U.S.A., EAU CLAIRE, WISCONSI	8	0
139	21.0	dehetrius p. Elias	Greece, penteli	14	4	248	8.0		U.S.A., EAU Clatre, wisconsi	8	0
140	21.0	jose OSORIO	PORTUGAL, PORTO UNIV. OBS.	21	0	249	8.0		U.S.A. . EAU CLAIRE, WISCOMSI	8	0
141	21.0		U.S.A., berea	21	0	250	8.0	M MCKINMON	u.s.a., panaha city, florida	8	0
142	20.2		AUSTRIA, viemka	15	3	251	7.7	K silber	austria, ghunden	6	1
143	20.0	R MIdDLETON	EMGLAND, COLCHESTER	13	4	252	7.7		AUSTRIA, VIENMA	6	1
14.4	19.7		u.s.a., grand rapids,michiga	11	5	253	7.7		ITALY. BOLOGKA	6	1
145	19.7	V rashussen	denmark, kolding	18	1	254	7.7	P. KILBEY	NEK 2EALAKD, AUCKLAND	6	
146	19.5	G MORSE	EmGLAKD, MAIDENHEAD	16	2	255	7.7	D HOUCH	U.S.A.. SOUTH PLAINF IELD	6	1
147	19.5		italy, ancona	16	2	256	7.5		ausiralia, canberra	4	2
148	19.5	D. coodman	hew zealand, carter obs.	16	2	257	7.5	M. nezel	geraaky, hanmover	4	2
149	19.2	H. Tonioka	JAPAN, hitachi	14	3	258	7.5		ITALY, TURIN	4	2
150	19.0		AUSTRIA, GRAZ	12	4	259	7.0	j. a. barrata araujo	BRAZIL, RECIFE	7	0
151	19.0		italy. padova	12	4	260	7.0	MAKEX	CZECH., PRAHA OBS.	7	0
152	19.0	bruce rusmak	U.S.A., ST. PAUL, MINEESOTA	12	4	261	7.0	M. Muller	germany, eilenburg	7	0
153	19.0	F CERCHIO	italy, rivalba, kr, turik	19	0	262	7.0	E ahmert	germany, sonneberg obs.	7	0
154	19.0	JOhn A. CHURCH	U.s.a., PRINCETON JUNC., M.J.	19	0	263	7.0	K Malde	horway, stavanger	7	0
155	18.7		EMGLAND, WOOLHAMPTON	17	1	264	7.0	J. Thiel	U.S.A., ht pleasant, michica	7	0
156	18.5		norkay, langenesbyga	8	6	265	7.0	neil blackburn	U.S.a., KANSAS CITY, MO.	7	0
157	18.5	robert germann	SWITzERLAND. WALD	15	2	266	7.0	thomas g. hcfaul	U.S.A., HOPEVELL JCT., N.Y.	7	0
158	18.0	C REID	camada. selkirk, manitoba	11	4	267	6.7	jean meezus	BELGIUM, ERPS-KNERPS	5	1
159	18.0		ITALY, MPLES	18	0	268	6.7	A. Houska	CZECH., TURMOV	5	
160	17.7		DENMARK, HARNDRUP	9	5	269	6.7		Emgland, easthan	5	1
161	17.7	V albrecht	U.S.A., MILMAUKE, WIS.	9	5	270	6.7		METHERLANDS, UITHOORN	5	
162	17.7	a yan der drift	netherlands, SOESTDIJK	16	1	271	6.7	THOHAS H, CAMPBELL JR.	u.s.a., temple terrace, fla.	5	1
163	17.0	M. kayada	japan, TOKYO	10	4	272	6.5	W. zImereman	GERMAMY, HANMOVER		
164	17.0	R BOSCHLO	netherlands, larem	17	0	273	6.5		netherlanis, soestdiuk	3	2
165	17.0	G marshall	S. africa, johamiesburg	17	0	274	6.5	RICHARD W. Lasher	U.S.A., LAKE PARK, FLA.	3	2
166	17.0		U.S.A., SOLON, OHIO	17	0	275	6.5	G SANOLYK	U.S.A., KILIVAUKEE, WIS.	3	2
167	16.7	K. HON.	JAPAN,	15	1	276	6.0		austria, vienka		0
168	16.7	j van der meulen	hetherlands, wognim	15	1	277	6.0	H. J. MIDDOP	CAMADA, PIERREFONDS, CUEBEC	6	
169	16.5		u.s.a.,	6	6	278	6.0	P. MAJSER	CZECH., PRAHA OBS.	6	0
170	16.5	a welis	EmGland, birhinghah	13	2	279	6.0	vots	CzECH., Prata obs.	6	0
171	16.5	F diego	MEXICO, MEXICO D.F.	13	2	280	6.0		DOMIMICAN REP. SANTO DOHIN	6	
172	16.5		U.S.A. WISCONSIM, UNIVERSITY	13		281	6.0		italy, milak	6	0
173	16.2		AUSTRIA, ST LEONHARD(POLTEN)	11	3	282	6.0	A PEMNEL	NEW ZEALAND, DUNEDIN	6	
174	16.2	matti suhonem	finland, helsinki	11	3	283	6.0	D. THEIL	u.s.a., MT PLEASAKT, hichiga	6	0
175	16.0	dietmar buttwer	germany, eilenburg	9	4	284	6.0	mame e. clark	U.S.a., MEBSTER GROVES, MO.	6	0
176	16.0	J MEDSKER	U.S.A., bUCHAMAN, michigan	16	0	285	5.7		australita, canberra	4	1
177	15.0	T. hiraiwa	JAPAM, KURASIKI	8	4	286	5.7		austria, vienma	4	1
178	15.0	Soukupova	CZECH., PRASA OBS.	15	0	287	5.7	HAMZLIK	C2ECH., CHEB	4	1
179	15.0	RICHARD SCHAIDT	U.S.A., MASHINGTON, D.C.	15	0	288	5.7	S Pattimson	EMGLAND. SOUTH CROYDON	4	1
180	14.7	K. kenhotu	japan, SImOSATO			289	5.7		EMGLAND. EXETER	4	1
181	14.5		austria, viemma	11	2	290	5.7	1 L horrison	EmGLand, yesthar, sussex	4	1
182	14.5		ENGLAND. EASTBOURME	11		291	5.7	M. SASMEI	JAPAN, TOKYO	4	
183	14.5	H LUFT	U.S.A., OMRLAND GARDENS, M.Y.	11	2	292	5.5	Van loo	belgina, charlero, hatmaut	2	2
184	14.0	A Hilton	RHODESIA, SALISBURY	,	4	293	5.5	LEman	belgine, charlero, haimaut	2	2
185	14.0	W. H. robertson	AUSTRNLIA, SYDNEY, M.S.W.	14	0	294	5.5		ITALY, BOLOCNA	2	2
186	13.7	P.C.a. barretto	Brazil, RECIFE	12	,	295	5.5	S. DOZYUM	JAPAN. SIMOSATO AUSTRLIA, MURRAY bridce	5	2
187	13.5	Pail teicher	U.S.A., FARMINGDALE,L.I., N.Y.	10	2	296	5.0	peter paisley	australia, hurray bridce	5	0
188 189	13.5	D SCOTT WICHELLE L. KLEINRICHERT	U.S.A., PAMAMA CITY, FLORIDA	10 8	2 3	297 298	5.0 5.0		aUSTRIA, VIEmM aUSTRIA, VIENMA	5	${ }_{0}^{0}$
190	12.7	ROLAMD BONINSEGKA	BELGIUA, CHARLEROI (MARCINELLE)	11	3	299	5.0		austria, viemma	5	0
191	12.7		PORTUGAL, LISBON OBSERVATORY	11	1	300	5.0		CAMADA, vict. dominion obs	5	0
192	12.7	x WILLI	SWITzERLAND, OBEREHRENDIMGEN	11	1	301	5.0	METOPIL	CZECH., PRAHA OBS.	5	0
193	12.7	M. OSBORN	U.S.A., MT PLEASAMT, hichica	11	1	302	5.0	dolezalova	CzECH., PRAM OBS.	5	0
154	12.5	3 PEDLER	EMGLAND, BRISTOL	,	2	303	5.0	${ }^{\text {a foss }}$	MORNAY, ASEER	5	0
195	12.2	V TANGMEY	U.S.A., MILMAUKEE, HIS.	12		304	5.0	oscar g. delas alas	PHILIPPINES, CUEZON CITY	5	0
196	12.0	klaus icebert	germany, scimidem/Stuttakt	12	0	305	5.0		U.S.A.. MISCONSIM, UMIVERSITY	5	
197	12.0		U.S.A., COLUMBUS, OHIO	12	1	306 307	5.0 4.7		U.S.A., MISCONSIN, UWIVERSITY AUSTRALIA, CAMBERAA	5 3	
198	11.7 11.5	geoffrey K . nhery T. kaz.	ENGPAND, READIMG	10	2	308	4.7		australia, canberra	3	
200	11.5	c. couling	NEW ZEALAND, tama	8	2	309	4.7		AUSTRIA, GHUNDEM	3	
201	11.2		MORWAY, bramdal	6	3	310	4.7		bermuda	3	
202	11.0	jean schamenen	belgium, charlero, haimaut	1	4	311 312	4.7		EmGLAND, BIRHINCHAK	3	
203	11.0		australia, geelong	11	0	312	4.7	W. beisker	GERHANY, HAMMOVER		
204	11.0	KYRIL W, FABRIN	AUSTRIA, VIENKA	11	0	313	4.7	flavio gambimo	italy, Chieri, torimo	3	
206	11.0	M AbduLahad	IRAQ, BiSRAH	11	0	315 315	4.7	M. GALIAGHER	MEM EEALAND, CARTER OBS.	3	
207	11.0		NETHERLANDS, COUTUM	11	0	316	4.0	D. S. KIMG	australia, sydney, n.s.w.	4	
208	11.0	D. KOLB	u.s.a., MT PLEASANT, MICHIGA	11	0	317	4.0		ausiria, vienma	4	
209 2010	10.7		DENHARK, COPENHAGEN	9	1	318 319	4.0		austria, vienka	4	
210	10.7 10.5	C Kapral	U.S.A., PARLIN NEW JERSEY CZECH., VALASSKE MEZIRICI OBS.	7	2	319 320	4.0	krajcir m Loocks-vasouez		4	
212	10.5	I. COOPER	MEN zEALAND. PALMERSTOM MOR.	7	2	321	4.0	${ }^{3}$ J OLESEM	demmark, RONNE BORNHOLM	4	
213	10.2	e rauscher	AUSTRIA, VIENKA	5	3	323	4.0	dietmar bohae	germany, nessa	4	
214	10.2		NETHERLANDS, HUIZEN	5		324	4.0	E. MIR.	japan,	4	
217	10.0	c brunt	ENGLAND, cambridge obs.	10	0	327	4.0	k. MASEYK	mex zealamd, waimuiohata	4	

RnK	alue	ObSERVER	location	total reap
328	4.0	N. Reco	Portugal, porto univ. obs.	0
329	4.0	H POVENHIRE	U.S.A., COCOA, FLORIDA	0
330	4.0	brad timerson	U.S.A., MEWARK, MEW YORK	40
331	3.7		australia, camberra	1
332	3.7	JOHk SOYLAND	australia, murray bridge	1
333	3.7		aUSTRIA, viemma	21
334	3.7	PERESTY	CZECH. . UHERSKY BROD	1
335	3.7		Emgland, south croydon	21
336	3.7		Emgland, south croydon	1
337	3.7		EMGland, south croydon	21
338	3.7		ENGLAND. hersthowceux, r.g.obs	21
339	3.7		EMGLAND, PRESTON	1
340	3.7	JUHANI KORHONEN	Finland, jyvaskyla	1
341	3.7	D. krauss	GERMANY, HMMKOVER	1
342	3.7		GERMANY, Henkover	1
343	3.7	T. UTI.	japan,	1
344	3.7		METHERLANDS, LAREM	21
345	3.7	J Parker	U.S.A., Milvaukee, vis.	21
346	3.7	R 2IT	U.S.a., milwaukee, wis.	1
347	3.7		U.S.a., sak francisco univ.	21
348	3.0	K. P. SDMS	australia, sydney, h.s.w.	0
349	3.0	T. L. MORCAN	australit, stdney, m,s.w.	30
350	3.0	SOJKa	CzECH., PRAHA ObS.	0
351	3.0	p. hazucha	czech. . hlohovec obs.	30
352	3.0	karlovsky	C2ECH. , hlohovec Obs.	30
353	3.0	s. kochan	CzECH., ziar mad hrouon obs.	30
354	3.0	J. BOCEK	CzECH., JIMDRICHUV HRADEC	30
355	3.0	ocemas	CzECH., banska bystrica	30
356	3.0	M. Matysek	CzECH. , COTTMALDOV	30
357	3.0	v hegvad	demarak. COPEMHAGE	30
358	3.0	Busch	germany, eilemburg	30
359	3.0	h kruger	GERMANY, HANHOVER	0
360	3.0	- kohlaach	GERMANY, HANMOVER	30
361	3.0	R Schneider	gerhany, stuttgart suabian	
362	3.0	K. koyama	JAPAN, TOKYO	30
363	3.0	a. marimo	new zealand, aucilamd	30
364	3.0	O. HULL	MEW zealand, aukland	0
365	3.0	R GLEDHILL	NEW ZEALAND, DUNEDIN	O
366	3.0	c. collins	new zealand, palmerston mo.	30
367	3.0	N BRYMILDSEN	WORWAY, HORTEM	30
368	3.0	beat rykart	Switzerland, amthal	30
369	3.0	M. BOLEN	U.S.A., MT PLEASANT, hichica	
370	2.7	g kanatschmig	AUSTRIA, GMUNDEN	1
371	2.7	M. SEDLACEK	CZECH., UHERSKY BROD	11
372	2.7	ken St. CLair	U.S.a., kansas city, mo.	11
373	2.7	andy pricbe	U.S.A., St. Paul, mikn.	11
374	2.0	G READIMG	australia, geelong	2
375	2.0	danielle bourgeois	belgine, montichies le tilleul.	20
376	2.0	VALEK	CZECH., PRAHA OBS.	20
377	2.0	kaplanova	CZECH., PRAHA OBS.	20
378	2.0	karas	CzECH., PRAHA OBS.	20
379	2.0	YYHLIDKA	CZECH., PRAHA OBS.	2
380	2.0	v. Skodova	CZECH., VALASSKE MEZIRICI obs.	0
381	2.0	M. vykutilova	czech., valasske mezirici obs.	2
382	2.0	E. belm	CZECH., TURMOV	20
383	2.0	E PEdersek	DEMHARK, HORSEMS, JUTLAKD	20
384	2.0	P RIPPIMGHAM	englamd, craviey	2
385	2.0	A DRImMond	emglamd, cranley	20
386	2.0	M. YAM.	Japan,	2
387	2.0	B. HITCHCOCK	hew zealamd, palmerston mo.	2
388	2.0	B SORENSEN	MORWAY, TBONDHEDA	20
389	2.0	M. LINKE	U.S.A., ht pleasamt, hichica	20
390	2.0	s. SIBLE	U.S.A., mt pleasamt, michica	20
391	1.0	Fiedlerova	CZECH., PRAHA OBS.	10
392	1.0	vacha	czech., Praha obs.	10
393	1.0	dostal	czech., praft obs.	10
394	1.0	k. raubauer	CZECH., valasske mezirici obs.	10
395	1.0	B. SIEGEL	CZECH., POLICE MAD METUJI	10
396	1.0	rakova	CZECH., UHERSKY BROD	0
397	1.0	J. YASICEK	CZECH., UHERSKY BROD	0
398	1.0	ziminikoval	czech., banska bystrica	-
399	1.0	KRaL	CzECH., COTTMALDOV	10
400	1.0	Kopriva	CzECH., COTTMALDOY	0
401	1.0	kolcava	CzECH., COTTMALDOV	0
402	1.0	REHAK	CZECH., CDTTMALDOV	10
403	1.0	rajnohs	czech. . ©ottualdov	10
404	1.0	M. petras	CzECH., ¢оTTMALDOV	10
405	1.0	hruza	CZECH., CHEB	10
406	1.0	KNECH	CZECH., СНEB	10
407	1.0	6 APPLEBY	EmGLAND, hersthonceux, r,g.obs	10
408	1.0	matti turunen	FINLAND, LIEKSA	10
409	1.0	franze	gerbany, eilemburg	10
410	1.0	SEIDEL	gebrany, eilenburg	1
411	1.0	litsa elias	greece, penteli	10
412	1.0	3. huitimoue	Japan, TOKYO	0
413	1.0	Y. KUB.	Japan,	0
414	1.0	k. Mat.	Japan,	0
415	1.0	F van der plum	netherlamds, viaardimgen	
416	1.0	FRAMCEY MCMAB	NEW ZEALAMD, AUCLLAND	
417	1.0	trixie stewart	new zealand, huckland	10
418	1.0	D. Whelam	mew zealand, tkorangi	10
419	1.0	F. AMDREWS	NEV 2EALAMD, BLACK birch	10
420	1.0	D. WILTSHIRE	mek zealamd, padrerston mo.	10
421	1.0	D. BUCKLEY	WEW zEALAND, CHRISTCHURCH	0
422	1.0	R. F. HALL	new zealamd, mhamarat	
423	1.0	T. J. HICKEY	mew zealand, uhangarei	10
424	1.0	STEIN HOYDALSVIK	morway, trohso	10
425	1.0	J Pfanmetstill JR	U.S.A., MILWAUKEE, WIS.	-
426	1.0	A. EDGAR	U.S.A., MT Pleasant, hichica	0
427	1.0	v. BISARD	U.S.a., MT Pleasant, hichica	10
428	1.0	k. BuIKE	U.S.a., MT Pleasait, hichica	0
429	1.0	R. ruelle	U.S.a., Mt pleasamt, michica	10
430 431	1.0	J. KIMPALL	U.S.A., MT PLEASANT, MICHIGA	10
431	1.0	ع. AMDREZEWSKI	u.s.a., mt pleasamt, michica	10
432	1.0	D. Bracg	U.S.A., MT Pleasant, michiad	10
4331	1.0	N. deblacum	U.S.A., MT PLEASANT, MICHICA	10
434	1.0	H POSS	U.S.A., Philadelpmit, Pa.	10
435	1.0	n herbstritt	U.s.f., ST, MARYS, PA,	10
436	1.0	SHERAAN W. SHULTZ	u.s.a., St. Paul, mikn.	10

available HMNAO tapes but no names were available. No U.S.S.R. observers are listed because only the totals for that country were available. Also, only 436 individuals are listed; 58 with no names and low scores were dropped in order to simplify the reporting format. Finally, some Japanese names are abbreviated since that's how they were presented on the available listing and I could make only a few complete correlations.

Again reviewing the listings since 1975, we find the only consistent placers among the top ten are: Sirahama Observatory of Japan, Hays of the USA, and Wieth-Knudsen of Denmark. In fact, Wieth-Knudsen and Hays are the most consistent leaders for the years available (see "A Correction to the 1977 Total Occultation Tally," O.N. $2(13), 178)$. Takemura of Japan was in the top ten for recent years, but dropped all the way to 109 for 1978. However, Clyde of the USA and Vincent of Rhodesia [Ed: now Zimbabwe] have placed since ' 76 and ' 77 respectively. Fuhr, our leader for 1978 was second in 1976, butabsent from the 1977 listing.

In the country listing, the USA leads, as always, because of its large number of observers. If value per observer is computed, however, South Africa leads with 137.1. Namibia is next with 92.5 and Rhodesia (the leader in this category in 1977) is third at 92.0. Africa is certainly an active continent!

Again, I want to express my appreciation to Honeywell Inc. for their computer time support of these tallies and of the asteroid occultation local circumstance predictions. Also, my thanks go to Dave Dunham, Tom Van Flandern, and H. F. DaBoll, for providing data and organizing the publication, respectively.

As to coming tallies, that for 1979 probably will emerge next fall. The 1980 list may follow shortly or be delayed, depending on the degree of completeness desired. (Remember, it takes about four years for a complete tape listing to become available. The coupons for 1981 still are arriving. It's tempting to compile preliminary lists based on data to date.)

OCCULTATIONS DURING THE LUNAR ECLIPSE OF 1982 DECEMBER 30

David W. Dunham

Much information about this year's last total lunar eclipse, with emphasis on occultations, is given in my article starting on p. 574 of this month's issue of Sky and Telescope (S\&T), and will not be repeated here. Also, considerable information about observing strategies and the value of eclipse occultation timings given in the article about the July 6th eclipse starting on p. 214 of O.N. 2 (16) will not be repeated here.

Although this month's totality will not last nearly as long as the July eclipse, the fact that the moon will be near perigee gives this eclipse some advantages for occultations. Since the moon is both closer (and hence larger in apparent size) and moves faster at perigee than at apogee, it will sweep out a larger area of the sky, occulting more stars, in a given amount of time; this will help offset the

New Zealand version). The coordinates are apparent of date (equinox 1983.00), so that they can be compared directly with the R.A.'s and Dec.'s given in the U.S. Naval Observatory (USNO) total occultation predictions. My plot on p. 575 of S\&T uses equinox 1950.0 coordinates and can be used to crossreference to other sources using 1950 coordinates, if that is needed. Since the S\&T map does not include the
star field eclipsed star field eclipsed
from Australia and New Zealand, O.N. subscribers there are being sent an equinox 1950 map showing stars to 10 th mag. which includes the field covered by the eclipsed moon for all parts of the world.

There is an obvious lack of faint stars on the right side of the chart for the Americas showing only the stars, for R.A.'s less than 6h 29 m . The faint Astrographic Catalog data for the C-catalog, from which the plot was produced, started at that R.A., since no part of the moon actually immersed in the umbra would cross that area for any terrestrial location during the eclipse. There is a representation of the moon's disk, shown in the proper size for use in conjunction with the chart, printed as a detachable portion of the "Count of Lunar Occultation Timings Made During 1982" coupon which is included in this issue. Watts angles are marked and labeled at 30° intervals around the
disk, with smaller marks at 10° intervals between 180° and 360°, to help in locating stars emerging at the western limb. The representation is based on a photograph of an earthshine-1it thin waning crescent taken by Thomas Campbell in Temple Terrace, FL, several years ago. The photograph shows well the muted appearance that the moon will have when it is deep within the umbra. I have drawn in some rays and features near the overexposed (sunlit) eastern limb, which is not as critical since disappearing stars are easier to locate. The disk should be cut out and moved, using the Watts angle markings to provide orientation (the Watts angle of the northernmost point of the moon's limb will be 5°), so that a reappearing star is at the predicted Watts angle on the disk; then, it should give a good simulation of the moon and star field at the predicted time. If you want to use a more detailed lunar map to try to locate reappearing stars, subtract 275° from the predicted position angle or 270° from the Watts angle to obtain the selenographic latitude of emersion. But few features other than shown here likely will be visible in the umbra, especially in its darker parts in the southwestern quadrant of the moon, where there are few prominent features near the limb. In general, it probably will be easier to locate reappearing stars using the patterns of the star field.

For the topographic tracks showing the moon's center on the second chart, dots plotted at 15 -minute intervals are connected by line segments. The dots (which individually can not be seen since they are just the ends of joined line segments), are plotted only when the moon is above the local horizon. Vertical marks are given every U.T. hour, which is labeled above the mark. Vertical marks also are given at 9:50.4 U.T. (first umbral contact), $10: 58.2$ (start of totality), $11: 28.7$ (mid-eclipse), and 13:07.0 (last umbral contact). The end of totality will occur very close to 12:00 U.T. The name of the city for which the track is plotted is given at the right (low R.A.) end of the track; The label for Los Angeles, the track between Miami and Mexico City, is nearly illegible due to interfering star numbers. Coordinates for the cities shown on all three versions of the charts are given in Table 1 below.

Table 1. Stations for Topocentric Paths

Location	Longitude	Latitude
Dunedin, New Zealand	170.500 E	-45.873
Brisbane, Australia	153.070 E	-27.516
Melbourne, Australia	145.000 E	-37.750
Tokyo, Japan	139.770 E	+35.660
Manila, Philippines	121.062 E	+14.651
Nanking, China	118.821 E	+32.067
Perth, Australia	115.830 E	-31.950
Naini Tal, India	79.457 E	+29.361
Montreal, Canada	73.600 W	+45.500
Bogota, Colombia	74.081 W	+4.599
Miami, U.S.A.	80.250 W	+25.750
Kansas City, U.S.A.	94.497 W	+38.964
Mexico City, Mexico	99.100 W	+19.250
Los Angeles, U.S.A.	118.302 W	+34.113
Vancouver, Canada	123.100 W	+49.500
Anchorage, U.S.A.	149.870 W	+61.210
Honolulu, U.S.A.	157.850 W	+21.300

The star numbers on the second chart are from different catalogs, depending on their values. Numbers
in the 400's and 500's are the last three digits of SAO numbers, the first two digits always being 78. Hence, the star marked 493 is SAO 78493 . Numbers in the 900 's and i000's are Zodiacal Catalog (Z.C.) numbers; 6.8 -mag. Z.C. 1014 is the brightest star occulted for most North American observers. Numbers from the 2000's to the 5000's are USNO C-catalog numbers. Numbers in the 9000 's are USNO X-catalog numbers, indicating AGK3 stars not in the SAO catalog. The star number always begins at a fixed distance to the right, and slightly below, the center of the symbol marking the star. This can help to untangle some cases where star numbers overlap. In a few cases, as for close doubles where both components are cataloged, the numbers are so crowded together that they can't be read. In these cases, as for the stars fainter than mag. 11.5, the USNO predictions need to be consulted to determine the actual star number. Known double stars are underlined on the charts. If you time the occultation of any star not plotted on the chart, mark its location on the chart. Arnold Klemola plans to take plates of this eclipse star field at Lick Observatory, as he did for the July 6th eclipse field. Several months after the eclipse, after we have received most reports of occultations timed during the eclipse, he will measure accurate positions for all stars whose occultations have been timed, whether or not they are on my charts. He also plans to measure the positions for some of the stars before the eclipse, so that we can update the predictions for grazes which are likely to be observed, as we did for the July 6th eclipse.

Every effort should be made to time reappearances, which are more valuable because they are timed less frequently during eclipses. If you have ready access to a copying machine, you might follow Richard Nol thenius' successful example for the July 6 th eclipse. Using the USNO predictions to position the cut-out lunar disk at the appropriate Watts angle, make a copy of the chart for each predicted reappearance to show how the moon will look relative to the star field. This could be done at one or twominute intervals if a few stars reappear during these intervals; mark the star number(s) and predicted U.T.(s) and uncertainties on each chart.

The brightest star to be occulted anywhere during the eclipse will be the $6.5-\mathrm{mag}$. spectroscopic binary Z.C. 1023 (SAO 78596). The occultation will be visible during totality from New Zealand and southeastern Australia. From 11:15 to 11:20 U.T., a graze will occur along the northern limit, which passes just northwest of Melbourne and Canberra, and over the northwestern suburbs of Sydney. David Herald plans to observe the eclipse from the Melbourne area, so he may be able to coordinate plans to observe the graze there. His address is given below, but during the holidays, he will be staying with his parents at 12 Elm St., Surrey Hills, Melbourne, Vic. 3127. Information near Sydney might be obtained from Roger Giller, 20 Gwydir St., Engadine, N.S.W. 2233. Although he plans to be at Hat Head during the holidays, he might return to the vicinity of Engadine for the eclipse, since the northern limit of the occultation of Z.C. 1023 passes only 21 miles northwest of Engadine.

For North America, 6.8-mag. Z.C. 1014 (SAO 78545) will be the brightest star to be occulted during the eclipse. The northern limit crosses northern Alaska
and northwestern Canada. Northeast of a line extending from the Carolinas to Wisconsin, the total occultation of this star can not be accurately timed since it will occur in the penumbra, just outside the edge of the umbra.

Grazes which might be observed at both the northern and southern limits during the eclipse are described on p. 575 of the $S \& T$ article. The stars marked "A" and "B" on the S\&T chart are 10.2-mag. CO3747 and 10.0 -mag. C03762, respectively. I erred in the S\&T article; it is the northern limit for $\mathbf{C 0 3 7 4 7}$ ("A") which crosses the southern limit of the occultation of SAO 78561 at North Powder, OR, not star "B." Paul Maley, 15807 Brookvilla, Houston, TX 77059, phone 713 , 488-6871, is organizing an expedition on the island of Hawaii to observe the southern-limit graze of C03747, while Richard Linkletter, 1108 Lafayette Ave. North, Bremerton, WA 98310, phone 206, 479-1191, is organizing an effort to record the star's northern-limit graze, as well as the graze of SAO 78561, at North Powder, OR. Maley notes that
the northern limit of C03747 also crosses Pocatello, ID and Denver, CO. At Denver, the graze probably will be very difficult to see, since it will occur at an umbral distance of 95% on what likely will be a relatively bright northern limb of the moon.

The forms of the International Lunar Occultation Centre (ILOC), or the equivalent IOTA/ILOC grazing occultation report forms, should be used for reporting observations of occultations timed during the eclipse. Besides sending your report to the ILOC, you also should send a copy to me at P.0. Box 7488, Silver Spring, MD 20907, U.S.A., or to David Herald, P.O. Box 254, Woden, A.C.T. 2606, Australia, if you live in Australia or New Zealand.

CORRECTION

Joseph Carroll notes a transposition of numerals in his address as given in O.N. 3 (1), 17, col. 1, line 6. The correct name and address are: Joseph E. Carroll; 4261 Queen's Way; Minnetonka, MN 55343; U.S.A.

ERRONEOUS STAR POSITIONS FROM OCCULTATIONS, by David Herald

ZC	SAO	DATE Ph	Ac 0-C	Observer	Corments
1051	78852	81 Nov 15 R	$2-4$	Hays	SAO/ZC proper motion in declination too sm
	93756	81 Jan 16 D	$7+11$	Hays	Slight difference in declination between SAO/Yale and AGK3
	93886	82 Feb 3 D	$3-5$	Baldridge	
798	94478	82 Feb 4 D	-6	Van Nuland	SAO/GC and AGK3 essentially agree
	94883	80 Mar 23 D	$2+3$	Hays	AGK3 slightly better than SAO/Yale
	94920	80 Mar 23 D	$2+5$	Hays	SAO declination position and proper motion in error
	95265	80 Aug 7	$6+9$	Hays	SAO/Yale and AGK3 essentially agree
	95594	80 Sep 23 D	$2+5$	Hays	SAO/Yale and AGK3 essentially agree
	96343	80 Feb 26 D	+4	Hays	SAO/Yale better than AGK3
	98249	80 Oct 31 R		Wieth-Knudsen	SAO/Yale in error. AGK3 position is used in USNO predictions, but not in HMNAO reductions.
	118325	80 May 22 D	$4-8$	Hays	SAO/Yale proper motion in right ascension in error
	140094	81 Jul 21 G		Stott	Graze path one mile south. SAO/GC/ZC declination and Yale declination are inconsistent.
	158927	81 Jun 6 D	$6-8$	Hays	No comparison
	159601	81 Aug 9 D	4-11	Hays	SAO dec. 1"3 north of Perth 70, but SAO better than Perth 70.
	160995	81 Feb G		Herald	Graze prediction; SAO/GC and Yale differ by three seconds.
	161066	80 Feb 12 R	$4+6$	Hays	No comparison
	163965	81 Sep 11 D	$7-8$	Hays	SAO/GC position and proper motion in declination in error
	165337	80 Dec 14 D	$4+5$	Baldridge	No comparison
	187233	80 Oct 16 D	$5+13$	Van Nuland	No comparison
	188091	80 Nov 13 D	? -4	Baldridge	No comparison
	188357	81 Oct 76 D	$4-5$	Hays	No comparison
	$\times 00853$	80 Dec 16 D	$3+8$	Baldridge	AGK3 star. No comparison. $=$ BD $-01{ }^{\circ} 85$
	$\times 02485$	80 Jan 24 D	$3+5$	Hays	AGK3 star. No comparison. $=\mathrm{BD}+04^{\circ} 308$
	X16083	80 Nov 6 R	8-10	Baldridge	AGK3 star. No comparison. $=B D+10^{\circ} 2195$

This list does not include several reports of occultations falling outside the accuracy range that occurred in the period 1981 Jan 1 to Jun 30. As noted in O.N. 2 (11), 124, the USNO predictions for this period required the addition of one second, and for those events reported that came within the accuracy range after the inclusion of this correction, no further investigation was made.

From the events which have been reported to me over the last several years, it has become evident that a significant number of these occurrences are caused not so much by error in the star position (at least not a significant error, anyway) as by the quoted accuracy being too small, particularly for occultations that are 'near grazing', i.e., those with cusp angles less than about twenty degrees (except near full moon). As a general guide, it would appear
that an occultation occurring outside the accuracy range is only worth investigating if the event occurs more than fifty percent of the accuracy range, or five seconds, outside the accuracy range, whichever is the lesser. For example: If the accuracy is two seconds, report only if the error is three seconds or more; if the accuracy is fifteen seconds, report only if the error is twenty seconds or more.

SOME HINTS FOR TIMING OCCULTATIONS

Dietmar Büttner

In addition to the time of the event, the report of each occultation observation should contain information on the accuracy of the measurement. This is needed to give your observation a weight when it is combined with other data in an analysis being made
at ILOC. The accuracy is an expression of the quality of your measurement, or in other words, it is a measure of accidental error in your observation. It is a value preceded by \pm, and tells by what amount the true occultation may have occurred earlier or later than the reported time. Example: You observed an occultation to occur at 21 h 18 m 3659 UT , and estimated the accuracy to be $\pm 0 \leqslant 2$. Thus, the occultation could have taken place between 21 h 18 m 3653 and $21 \mathrm{~h} 18^{m} 36 \$ 7$ UT.

I prefer to use the term 'uncertainty' rather than 'accuracy' because in the case of the latter, a small value means a high accuracy and vice versa, while the uncertainty is low when its value is small. By using the 'uncertainty' term, misunderstandings are much less probable. The uncertainty should not be confused with the personal equation (PE) or with the time corresponding to the distance between two adjacent marks on your stop watch.

How can the observer get a reliable value for the uncertainty? The correct way to resolve this task is to analyse the timing method being used to find out where there are sources of uncertainties. Thus, the timing is considered as a whole process which consists of several parts. Each of the parts brings an uncertainty, and the uncertainty of your measurement is the sum of all these components. I will try to show it with the stop watch method, which probably is the method in most common use:

A timing using this method consists of three parts:

1. starting the watch as quickly as possible after the occultation; it provides the systematic error PE. Here, an uncertainty depends on how well you are able to estimate your PE for this particular occultation event;
2. the period during which your watch continues to run; since your watch is too slow or too fast, a systematic watch error must be considered. The uncertainty resulting from this part is the uncertainty with which you determined the systematic error of your watch. Here, as an adequate approximation of the uncertainty, you can use the standard deviation computed from a series of tests to find the watch's error;
3. stopping the watch at any defined moment, e.g., 6 s after a whole minute at the standard time signal; here, you probably are late by a few tenths of a second (0\$1 or 0\$2 or so). Although this systematic error is smaller than the PE in most cases, it is large enough to require consideration. The uncertainty of this part again depends on your ability to estimate the delay in relating the stop watch to the time signal. It is also present when you use the Taylor method! [Ed: As we had been led to believe that the Gordon Taylor method eliminated this source of error, we invite further comment from Herr Büttner, to explain that statement.]

Clearly, the described method seems to be rather complicated, but it is the only way to get reliable values for the uncertainty. Estimating the uncertainty of the process as a whole probably would lead to too large an estimate. As a rule, I recommend that systematic errors should be determined and the observing result should be corrected for them. Uncertainties from all parts also should be determined where possible, or at least estimated, and then added to get the uncertainty of the whole tim-
ing process. [Ed: While taking care not to fall on your face, you should avoid leaning so far the other way that you fall on your back. Adding all possible errors, without respect to sign, could lead to too large an estimated uncertainty, resulting in your observation being given less weight than it deserves by the ILOC. Remember that you are not supposed to be stating the extreme limits of possible error; rather, you should be stating that there is a 67% chance that your timing is within the stated uncertainty.] An analysis of the method used, such as shown above, is also very useful in improving the precision of the observation by eliminating such parts as may have large uncertainties. This can lead to a change in the timing method, e.g., to eye-and-ear instead of the stop watch method.

Another important point regarding timing results is the number of digits given after the decimal point in the seconds part of the reported time. The only digits which should be given are those which are valid with respect to the uncertainty of the timing. Example: If you suspect the uncertainty to be $\pm 0 \leqslant 2$, enter only one digit after the decimal point, not two or more digits. This rule also should be considered in the PE or in any watch error for which the result is corrected. Often these quantities are determined from a test series, and the mean values are computed to three or more digits after the decimal point. In such cases, the standard deviation of the series should be calculated. This is a measure for the accidental errors. It then will be seen that the second or third digits are quite useless because the standard deviation lies higher by one or two orders. I believe that the cause for giving more digits than are valid often is the use of electronic pocket calculators or electronic stop watches. Clearly, they give many digits, but they don't know the practical importance of them. This can be determined only by the observer. If you give the uncertainty of the timing to $0 \$ 01$ or $0 \$ 001$, please recall that the uncertainty is partly or totally the result of estimates, and that nobody can estimate 0 ST01 or 0 §001. Always, it feigns a higher precision than really exists if more digits are given than are valid!

As a third hint, please note that values for PE and watch error estimates should be determined for the actual observing situation. Remember that these values depend on such influences as disposition of the observer, temperature, etc. This may seem trivial, but is rather important for reliable timings. Generally, the use of standard values for the mentioned quantities will lead to larger uncertainties and errors, thereby reducing the value of the often excellent efforts of amateur astronomers to get data which are useful to professional astronomers.

Finally, a more general aspect of timing occultations: Each occultation is an unique event, in that it does not occur again under exactly the same circumstances, e.g., position angle, libration, distance and speed of the moon, etc. Thus, a measurement can not be repeated, as is possible, for instance, with dimensional measurements in the manufacturing process. For that reason, the greatest possible care should be given to each occultation timing in order to get an uncertainty as small as achievable. Finally, it should be noted that the attainable precision of any observation may not be as fully utilised in a current analysis as it can
be a few years from now, when more accurate limb corrections and star positions become available

WEATHER AND OCCULTATIONS DURING
 THE LUNAR ECLIPSE OF 1982 JULY 6

David W. Dunham

An infrared NOAA satellite photo taken during the eclipse shows the complex weather pattern which hindered many observers during the July 6th eclipse. The photo, taken at 7 hours U.T., enhances cold high-level cirrus, while some opaque low-level stratus clouds, being nearly as warm as the land which they cover, are barely visible. The weather was capricious, with few substantial areas of clear sky, whose location was hard to predict in advance. Clear skies prevailed over normally humid Louisiana and eastern Texas, while clouds covered the desert regions farther west.

About 15 hours before the eclipse, I asked the National Weather Service where the best possibility for clear skies would be in the eastern $2 / 3 \mathrm{rds}$ of the country, where the most favorable occultations would be visible. They recommended Georgia, which we could reach by automobile from the Washington, DC, area. Skies were mostly cloudy during the drive south, until we reached South Carolina, where the sky was very clear. We drove to Columbia, where we met local observers who were kept busy with an open house at their observatory. It was a classic example of what I warned against in the article about the July 6 th eclipse in last June's O.N. Later, we learned that no occultations were timed there because the astronomers had their hands full showing visitors the eclipsed moon through the observatory telescopes, when small portable scopes set up on the front lawn could have served the same purpose, freeing the large telescope for research. Skies remained good, so we decided to observe from a site near St. Matthews, on the southern limit of the occultation of AR Sagittarii about 30 miles to the south. We called the weather service 4 hours before the eclipse to see if it might be better to continue on to Georgia. Clouds then covered most of Georgia, and they recommended going northwest. We decided not to travel farther, since we did not have occultation predictions ready for more northern sites and would miss the graze of AR Sgr if we moved. Using a 14-inch Schmidt-Cass loaned to us by Robert McCracken, I timed 9 occultations of stars as faint as 12th magnitude on the moon's northeastern limb before low stratus clouds covered our site at 7 hours U.T. The clouds thinned enough to see AR Sgr briefly a few minutes before the graze, but not during it. We learned later that clouds also moved in during the eclipse at Columbia and for observers in North Carolina, especially the western part, where it rained. Back in the DC area, the whole eclipse was seen, but observers there (Victor Slabinski, Arlington; and Paul Hueper, Bethesda) were able to time only one occultation due to cirrus and haze. Fred Espenak, Bowie, MD, contacted the weather service a few hours before the eclipse and traveled, at their suggestion, to southeastern Maryland, where he had a clear view until the last partial phases. Although the altitude was lower, Mark Allman (near Pittsburgh, PA), Robert Young (Harrisburg, PA), Don Trombino (Sparta, NJ), and Philip Dombrowski (Glastonbury, CT) were each able to time about a half dozen occultations.

Paul Maley was the most successful occultation observer during the eclipse who has sent me a report. Using a 17-inch Dobsonian in his back yard in Houston, TX, he timed 48 disappearances and 25 reappearances (as noted briefly on p. 392 of the October issue of Sky and Telescope), including nearly 20 stars which are not in the Astrographic Catalog, which I had used to compute predictions for stars as faint as photographic magnitude 13. As far as I know, his total of 73 occultation timings is a record for one observer in one night. This remarkable achievement was made by an amateur astronomer with his own equipment, not by a professional astronomer, and not at a public observatory.

My map in the January issue of Sky and Telescope shows that the northern limits of the occultations of $8.4-\mathrm{mag}$. SAO 187543 and $7.7-\mathrm{mag}$. SAO $187581 \mathrm{in}-$ tersected in eastern Oklahoma during the eclipse. Carl Schweers (Ardmore, OK) and Tom Williams (Houston, TX) led a 4 -station expedition to Stigler, OK, at the intersection. About a week before the eclipse, Arnold Klemola obtained a plate of the eclipse field with the 20 -inch twin astrograph at Lick Observatory. He relayed to me his measurements of several of the stars, including the two in question, to update the predictions of all grazes to be attempted during the eclipse. This enabled the observers at Stigler to select optimum locations, from which they timed 80 contacts during the two grazes. Biff Bigbie was most successful, getting 18 events for SAO 187543 and 13 for SAO 187581. The observations will define the profile of the northern limb of the moon very accurately for an extended range of position angles, which in turn will be of particular value for our analysis of total solar eclipse Bailey bead timings for determining the solar radius. The observers were quite lucky, since the sky was very clear during the eclipse, but quite cloudy shortly before it began and soon after it ended. Tom Williams' plot of their results for SAO 187543 was published on p. 576 of this month's Sky and Telescope.

Richard Nolthenius (Los Angeles, CA) observed the eclipse with his 6 -inch reflector from Kennedy Meadows at an elevation of 6480 ft . in the Sierras. He timed 28 occultation events, including a few of a graze of an 11.8 -mag. star. He had selected the site partly because it was at the northern limit of the occultation of an 11.8 -mag. star. Don Stockbauer (Houston, TX) timed 4 events during the graze of AR Sgr using an 8 -inch Schmidt-Cass near Damon, TX. Although Klemola's plate showed that the star was mag. 8.7, brighter than usual, Stockbauer had some trouble seeing it against the moon's southern limb, which was much brighter than the northern limb. At Damon, the graze occurred shortly after totality began when the southern edge of the moon was still close to the edge of the umbra. In the June issue of o.N., distributed a week before the eclipse, I stated that "the northern part of the moon may be slightly darker than the southern part during the eclipse," since the eclipse was nearly central and dust from the Mexican El Chichón volcanic eruption of April 4 was mainly confined to the earth's Northern Hemisphere. This turned out to be an understatement; Richard Nol thenius first had suggested the idea to me. Comparison of Patrick Thomas' photograph of the eclipse and star field on p. 393 of the October issue of Sky and Telescope with Sherman Schultz's photo of the 1963 December eclipse on p. 602 of that journal's June issue shows that the lat-
ter eclipse was considerably darker than last July's eclipse. Measurements of the brightness of the totally eclipsed moon in July were nearly two magnitudes brighter than those for the 1963 December eclipse.

Thomas Langhans (San Bruno, CA) timed 24 occultations using a 14-inch Schmidt-Cass during the eclipse. Bob Melvin (Fayetteville, NC) used the University of North Carolina's 24 -inch telescope at Chapel Hill to time occultations during the eclipse. He clearly saw about 25 occultations before clouds moved in at mid-eclipse, but recovered only 3 timings due to tape recorder problems.

The NOAA photo shows extensive cloud cover over Mexico, Central America, and northern South America. Observers in Recife and Porto Alegre, Brazil; Buenos Aires, Argentina; and Valparaiso, Chile did not see any of the eclipse, due to clouds. Astronomers at Santiago, Chile, were able to time some occultations during breaks in the clouds. Graham Blow timed about 25 occultations using the 9 -inch refractor at Carter Observatory in Wellington, New Zealand. At last report, he had received 51 occultation timings from 7 other observers around the country, and estimated that over 100 timings during the eclipse eventually would be sent from New Zealand.

Some potential observers said that commitments to news media and public viewing prevented any serious observing of the eclipse, and hoped to make better arrangements for obtaining data at the December 30th eclipse. Cold weather, the late hour of a weekday, and a duration far short of a record for the century likely will discourage public viewing, permitting more concentration on projects like timing occultations. Since the moon will be in Gemini, it will be farther above the horizon during most of the eclipse for most of the U.S.A. (especially the western half). More information about the December 30th eclipse appears in a separate article in this issue. A tally of occultation timing totals for all three lunar eclipses during 1982 will appear in future issues of occultation Newsletter.

EXPERIENCES WITH THE EYE-AND-EAR METHOD

Dietmar Büttner

Since early 1982, I have used this method routinely for timing lunar occultations, whereas during the previous four years I used the stop watch method. Knowing both methods from a considerable number of observations, I will compare certain aspects of them and report my current experiences with the eye-andear method here.

The eye-and-ear method provides an absolute measurement of the occultation event time. That is, the event is related directly to the UTC time scale, whereas in the stop watch method, the primary measurement is of the difference between the event time and a time signal, using the stop watch calibrated against the time signal as a secondary standard. As the nomenclature implies, the eye-and-ear method does not use any watch but the observer's eye, ear, and mind. Thus, in this method, no systematic errors or uncertainties from the watch itself, respective to starting or stopping it, can have any influence on the precision of the timing. Most important is the elimination of the personal equation,
which is the biggest source of error in the stop watch method. Instead, another effect becomes central, namely the question of how precisely you can estimate the tenths of a second between the two second markers bracketing the occultation. Even after my first few observations using this method, I realized that this ability is solely a matter of some practice.

Regarding the uncertainty, two aspects should be mentioned:
a) I feel that smaller uncertainties are achievable with eye-and-ear than with the stop watch. This is possible because fewer error sources are inherent than in the stop watch method. Whereas with the stop watch I expect to attain averages not less than ± 0.3 or so, it is easy to obtain $\pm 0 \leqslant 1$ when working with eye-and-ear.
b) Due to the direct method of measurement, it seems to be much easier to estimate the uncertainty of the timing with eye-and-ear than with the stop watch. I do this in the following way: After estimating the time of the occultation, I ask myself whether the event could have occurred by an arbitrary amount (usually 0\$3) earlier or later than was recorded. Depending on the answer (yes or no) I reduce or increase the amount by $0 \leqslant 1$ and ask again. This is continued until I believe it to be as close as possible to the probable uncertainty.
In the case of gradual occultation events, I feel that I am able to estimate the duration of the gradual stage rather precisely. Using the eye-and-ear method, I hear the time signal, which is practically a one-second scale. Most gradual events, however, have durations shorter than one second, so they can be estimated conveniently with respect to the time signal.

A disadvantage of the eye-and-ear method is the necessity of having a time signal available at the telescope. When using the method, be sure that you continuously can hear the time signal satisfactorily. In the case of short-wave time signals, the reception may fade suddenly. Therefore, you always should have a stop watch in your hand to ensure getting the timing, even when you can hear no time signal at the moment of the event.

I believe that the above justifies my conclusion that the eye-and-ear method is more favorable than the stop watch method for timing lunar occultations in most cases. In the final analysis, it may be too peremptory to state that the eye-and-ear method is the more precise method, but it certainly achieves an accuracy at least equal to that of the stop watch method while requiring much less expenditure of effort to determine and correct any errors. To those observers who have not worked with this method, I offer my recommendation that they familiarize themselves with it.

ASTEROIDAL OCCULTATION FINDER CHARTS AND REGIONAL MAPS FOR SOUTHERN HEMISPHERE OBSERVERS

David W. Dunham

In the last issue, I noted that finder charts and regional maps usually were published in O.N. only for asteroidal occultations potentially visible from North America and Europe. There are few subscribers
in other parts of the Northern Hemisphere, so I usually send them copies of the computer-produced charts and maps directly. Sometimes, an event will be visible from both Europe and Asia, for example. In such a case, the Asian observers usually will not be sent a finder chart, since it will be published in O.N. I send these materials for Southern Hemisphere events to regional and national coordinators, who distribute them to IOTA members and other O.N. subscribers in their region or country, as specified below. If you live in these regions, you should inform the appropriate coordinator of your current address and telephone number(s) which might be useful for distributing the results of last-minute astrometric prediction improvement. Also, you should send the coordinator some self-addressed (and stamped, if you live in the same country) long envelopes to decrease his costs and expedite the distribution. The addresses and telephone numbers of the regional coordinators are given below:

Australia. David Herald, P.O. Box 254, Woden, A.C.T. 2606. Telephones area 62,319214 (home) and 832111 (work). Observers in Australia, especially the eastern part, may wish to subscribe to the quarterly circulars of the Occultation Section of the Royal Astronomical Society of New Zealand (see New Zealand below), since it contains charts, maps, and news which are often applicable for Australia.

New Zealand. Graham Blow, Director, Occultation Section of the Royal Astronomical Society of New

Zealand, P.O. Box 2241, Wellington, New Zealand. Telephones 861882 and 728167.

Northern South America. Jorge Polman, Clube Estudantil de Astronomia, Colegio Sao Joao, Rua Francisco Lacerda, 455-Varzea, 50.000 Recife - PE- Brazil. Telephones area 0812, 271864 or 270094.

Southern Africa. M. D. Overbeek; Box 212; Edenvale, Transvaal 1610; Republic of South Africa. Telephone 11-53-5447.

Southern South America. Eduardo V. Przyby1, Observatorio Astronomico, Colegio Nacional Luisa R. de Barriero, 9 de Julio 387, 2300 Rafaela (Santa Fe), Argentina. Telephone 22163

DECEMBER LUNAR ECLIPSE DARKNESS AND CONTACTS

Geoffrey W. Amery

If the observations do not interfere with occultation timings, I would appreciate estimates of the intensity (preferably using the Danjon scale) and colors of the December 30th total lunar eclipse. Estimated times of penumbral and umbral contacts also would be helpful. Please send reports to me at 183 Church Road, Earley, Reading, Berks. RG6 1HN, England. Results will be published in the circulars of the Lunar Section of the British Astronomical Association.

PLANETARY OCCULTATIONS DURING 1983

David W. Dunham

[Ed: This is a continuation of the article which began on page 9 of the last issue. The first paragraph below was inadvertently omitted last time; it should have been the second paragraph under its heading, on page 17.]

Local Circumstances. Since the computer program producing these predictions was originally written by me, and since Mr. Carroll uses input data supplied by me, his calculations are consistent with mine. For each input event, the local circumstances printed include the U.T. and distance (in arc seconds, kilometers, and diameters of the occulting object) of closest approach, and the altitude and azimuth of the occulted star, the sun, and the moon. No data are printed if the star is below the horizon more than an amount proportional to an estimate of the occulting object's along-track (time) error, or if the star is fainter than 6th mag. in daylight.

Notes about Individual Events (Continued)

Oct. 1: The star is A.D.S. 10893, with equally bright components separated by about 0.2. Hence, the Δm that observers actually will see will be about 0.7 , since only one component will be occulted at a time, except in the unlikely case that the orbit is very eccentric and the stars are near periastron. Unfortunately, the orbit can not be determined with the four available observations, all of which range from 0.17 to 0.123 in separation. The observations were made in 1926.58, 1927.37, 1928.61, and 1960.57, when the p.a. was measured at 12.8°, $23.3^{\circ}, 27.4^{\circ}$, and 30.2°, respectively. Since the components are equally bright (only the last obser-
vation indicates a 0.1 -mag. difference), the actual p.a. in the late 1920^{\prime} s could be 180° from the reported values. So it is possible that, from the late 1920's to 1960, the stars completed one, a half, or no revolutions, resulting in periods of 32, 63 , and 4110 years, respectively. The last value seems much too long for such a close pair. Of the others, the 63-year period (half-revolution from 1920's to 1960) gives a smaller error in the p.a. in 1960 if the approximate angular motion is computed from the differences in p.a. in 1928 and 1926. This would imply that the p.a. in 1983 0ct. would be 163° with a sep. of perhaps 0.11 . These parameters imply that the paths for the occultations of the two stars will be separated by only 0.03 (less than Lachesis' radius), so that observers fortunate enough to be in the occultation path probably will see occultations of both components, the disappearance of the second star following the reappearance of the first star by about 11 seconds. But these are only rough estimates from the available meager observations, so recent observations of the sep. and p.a. by Southern-Hemisphere observers are needed to predict the circumstances more accurately.

Oct. 5 and 14: The diameters of (55) Pandora (occulted Oct. 14) and Palma (Aug. 21 and Oct. 5) are very uncertain due to their ambiguous type. Since a low albedo typical of C-type asteroids has been assumed, the actual diameters for these objects may be considerably smaller, possibly by even more than 50\%. The angular diameters and central occultation durations consequently also may be smaller.

Nov. 20: (6) Hebe may have a $20-\mathrm{km}$ satellite, based on Maley's 1977 March 5 observation.

Dec. 30 , (4) Vesta: The $\Delta \mathrm{m}$ will be difficult to detect even photoelectrically.

SAO 118599 by Elpis 1983 Jan 19

SAO 140011 by Aeria 1983 Jan 24

$\mathrm{N} 11^{\circ} 201$ by Fortuna 1983 Feb 3

SAO 160906 by Eugenia 1983 Feb 5

SAO 80228 by Dione 1983 Jan 19

SAO 80157 by Dione 1983 Jan 27

L 679853 by Europa 1983 Jan 19

L 679733 by Europa 1983 Feb 2

EPHETERIS SOURCE $=$ EMP 1981

L 692822 by Interamnia 1983 Feb 6

L 679736 by Europa 1983 Feb 8

L 679737 by Europa 1983 Feb 9

SAO 188703 by Ceres 1983 Feb 12

L 679740 by Europa 1983 Feb 13

SAO 95572 by Kassandra 1983 Feb 14

L 692831 by Interamnia 1983 Feb 17

SAO 186447 by Patientia ' 83 Feb 19

$+00^{\circ} 311$ by Antigone 1983 Feb 27

SAO 162050 by Davida 1983 Feb 28

SAO 79122 by Hippo 1983 Mar 2

EPHEMERIS SOURCE $=$ HERGET78

EPHEMERIS SOURCE $=$ HEPGET7B

-2164352 by Uranus-R 1983 Mar 3

SAO 110445 by Undina 1983 Mar 6

$+03^{\circ} 2001$ by Meliboea 1983 Mar 6

SAO 185773 by Merapi 1983 Mar 7

- EPFEIERIS SOURCE = EMP 1980

EPFEIERIS SOURCE = ERP 1981

SAO 161056 by Chicago 1983 Mar 8

SAO 93315 by Fortuna 1983 Mar 11

SAO 156569 by Aeneas 1983 Mar 17

L 679758 by Europa 1983 Mar 19

ERETERIS SOURCE $=$ HERGET78

