OCCULTATION

 NEWSLETTERVolume I, Number 1
July, 1974

Edited by H. F. DaBoll, 6 N 106 White Oak Lane, St. Charles, Illinois 60174 First issue pubjished at Austin, Texas; succeeding issues at St. Charles, Ill.

AN INTRODUCTORY STATEMENT

The Occultation Newsietter has these objectives:

1) to publish quarterly, but with the flexibility to issue intermediate unscheduled important notices;
2) to inform observers regularly of newly-discovered double stars, and of other occulted objects of particular scientific interest, including planets and asteroids;
3) to publicize new observing techniques;
4) to inform observers of progress with the analysis of observations, including summaries of published results;
5) to publish articles and notes contributed by observers, particularly those discussing observing techniques and unusual observations; and
6) to stay out of debt.

In meeting most of these objectives, we have been promised support of those astronomers who are working with occultation data at the U. S. Naval Observatory, the Royal Greenwich Observatory (H. M. N. A. 0.), and the University of Texas at Austin. We shall need, and we earnestly solicit, literary contributions from observers.

We shall also need the financial support of observers, as all costs of pubiishing, after this first issue, will be paid-for thru individual subscriptions. We suggest that you send your $\$ 2.00$ subscription check, payable to Occultation Newsletter, along with your new Observer Information
(Cont. on pg. 2, col. 1)

Planetary Occultations

Conducted by Mike Reynoids

Recent Observations

17 October 1973 - Occultation of Saturn by a 66%-sunlit Moon. The path of the southern limit of this occultation passed through Canada, near the U.S.-Canada border. Several of the Royal Astronomical Society of Canada Centers, in particular, Calgary and Winnipeg, set up expeditions for the event. The Calgary Center, expedition headed-up by F. J. Howell, set up for the occultation of the satellite Titan near Edmonton, Alberta. Clouds interfered with most observations, but toward the time of Saturn's third contact, the weather had changed enough to allow observers to view it. Right before 3rd contact of the rings (between 1 and 2 seconds), a faint glow was seen by one of the observers, which appeared like seeing "a campfire on the other side of a treeless hill on a dark night". Behind this glow came the rings of Saturn. The faint glow rapidly brightened and became bigger as the rings became visible following 3rd contact. The glow increased slightly in width and showed easily-detectable Moon limb curvature on its sharp edge, but at about 4 seconds after 3 rd contact, the glow was indistinguishable against the increasing ring brilliance (from a summary of a letter to the editors of Nature by T. A. Clark, F. J. Howell, and G. Reed). Four stations set up. The Winnipeg Center ex~ pedition was headed-up by Richard
(Cont. on pg. 2, col. 1)
(INTRODLICTORY STATEMENT, cOnt.) Fomn, to Dayid Dunnain, by August 15th, as this will facilitate compiling the News?etter's mailing list. After August ifth, any new Subscriptions should be sent to decultation Wwaldettry, 6 is 106 White Oak Lane, St. Charles, Illino:s 60:74.

If the list of paid suoscribers is simall, we will need to economize wherever we can, to try to mantain the $\$ 2.00$ rate. With a large list, we may be able to use higher qualtey printing (incluaing better reproduction of more contributed photographs), more pages, aimail aiseribution, and/or to extend the 泡解 of your subscription perioc beyond ane year.

Although Ocoultation Nowstetter is probably the name which gives the best clues as to the purpose and con tent of this publication, perhaps some other name might be less prosaic, while still being adequately descriptive. So far, we have received three suggestions: The Oeoult Wessenger , The omze Gazette, and The indden Star. If you have a suggestion, please inciude it when orfering your subscription. We will pubitish all reasonable suggestions, including the four above, in the second issue. along with a ballot form. The suggestion receiving the largest number of votes from subscribers will be used as the permanent name, beginning with the third issue.
H. F. DaBoll
(PLANETARY OCCULTATIONS, cont.) Bochonko and B. F. Shimn. The group set up to the north of Winnipeg, near Gimli, for the partial occultation. However, poor weather set in, and no successful observations were made. Stations included 7 observers from Winnipeg and Jacksonvi!le, Fiorida.

11 December 1973 - Occultation of
Saturn by a 59%-sunlit Moon. The path of the southern limit of this occultation passed through W. Asia, M. Eu-
rope, Greentand, and in, E. of North Anarica. Two obsenvers in France, Jean Bourgeois and jean Neirinckx, observed and timed the occultation. Both observers reported that the event was yery difficult to observe.

Two other observers. A. Owen and J. Moller, aiso cbservec the partial ocaltettion in France, with G. Nash, of Dorset, Engiand, The weather was very poor. adout ? on the 1-10 scale, but contact timings (ist and 4th) were made.

7 vanuery 9.974 - Occu?tation of Saturn by a 98 a-sumitt hoon. The path of the soutnere bnta nan from North Carolina to Hhenots, an from there. Only one successiru acervation was received for this occulcation. Kevin Wigell reports that he observed and timed the cocuitation from Bowbonnais, Illincis. He said that the rings were visible at of the time.

An expedtton has ?ee by M. Reynolds of Jacksonvtie, Floricia, to Rocky Mount, Worth Carolina for the event. However, very poor neather set in, and even the moon was difficult, if not fipossible, to see. The expedition included C. Catn. R. Hill, and D. Talbert, a!! from Greensboro, North CaroHna, and H. Ganney, L. Heilig, G. Hogian, D. Reynolas, M. Reynoids, B. Roberts, D. Sisson, C. Stephens, and D. wolters, äl: from jacksonville, Fla.

F Narch 1974 - Dccultation of Mars by a 42% wumite moon. The path of the southem limit passed across the midL. S. The Mars occuttation was seen by many observers. Braci Schaefer reports that he observed and timed the event from Derver, Colorado. Byron Labadie, of Thisa, OkTahoma, reports that he observed the mear-partial occulcation of fiars. 50 miles fron the limit, near Chanute, Kansas. He timed the event, and then photographed the Moon and Mars right after the event, coming-up with some good shots. Roy Bishop observed the total occultation of Mars from his observatory in Nova Scotia,
(PLANETARY OCCULTATIONS, cont.)
and timed two contacts. Hal Povenmire and Joe Huertas, from Indian Harbour Beach, Florida, set up for a total of Mars, near Rocky Mount, North Carolina, timed the event. They had hoped to time a grazing occultation of a 5 th magnitude star after the Mars occultation, but were clouded-out. An expedition was led by M. Reynolds, of Jacksonville, Florida, to time the event. 9 complete stations were set up, and included D. Costanzo, from Wilmington, North Carolina, D. Green and J. Downs, from Boone, North Carolina, R. Hill, from Greensboro, North Carolina, and H. Carney, D. Reynolds, M. Reynolds, B. Roberts, K. Simmons, D. Sisson, and C. Vaughn, all from Jacksonville, Florida, and W. Green, from Orlando, Florida.

2 March 1974 - Occultation of Saturn by a 64%-sunlit Moon. The path of the southern limit passed from the northeast U. S.-southeast Canada, west through the mid-U. S. Reports of this event are limited, as weather was very poor along the occultation line. Roy Bishop observed what he described as a near-partial occultation from his observatory in Nova Scotia. Brad Schaef-
er observed the Saturn occultattion in daylight conditions near Denver, Colo.

If you attempt any planetary occultation timings, total or partial, and wish to submit a report to us, please send it to Mike Reynoläs, 1836 Birchwood Road, Jacksonville Beach, Florida 32250. Please include the number of stations and names of all participants in case of an expedition, success of observations (report also if not successful), and general comments about the occultation. Good photos will be printed in future issues.

Upcoming P1anetary Occultations

Occultation of Venus, 17 July, 1974, 6%-sunlit Moon. During Wednesday morning, July 17th, the third brightest celestial object will be occulted by the second brightest. This rare occultation of the planet Venus will occur for most of the eastern United States. However, low Moon altitude, twilight, or even daylight conditions will affect observations. The Moon will be a slender waning crescent, 6% sunlit, while the disk of Venus will be 86%-sunlit, 11.9 in diameter, and of magnitude -3.4.

Path of Occultation of Venus - 17 July 1974
(Reprinted by permission from the Japanese Ephemeris 1974, published by the Hy drological Department of Japan)

In region 1, only the reappearance will be visible.
In region 2, both the disappearance and reappearance will be visible.
In region 3, only the disappearance will be visible.
(Cont. on pg. 4)
(PLANETARY OCCULTATIONS cont.)
Predictions for the thmes of the total occultation and for the partial occultation can be obtained from Dr. Dunham. [Hote added in press: This was true at the time Mr. Reynolds submitted his column, but due to late publication, you are advised to estimate your own times, from Dr. Dunham's article in June, 1974 Sky and Telescope] If you attempe either the total or the partial event, we would like to hear from you, even if you got no results.

The partial occuitation of venus, which occurs along the upper and lower lines, will be quite spectacular. The 19-mile wide path runs from Nebraska to near Sioux City, Iowa, on to Ontario, Canada. First contact will be difficult to time, due to irradiation extending the Moon's and Venus' apparent limbs. The second contact will be fairly easy to time, since Venus' surface brightness is so mivch greater
than the Moon's. Third contact will be spectacular, and can be precisely timed, if one is looking in the right place. As Venus emerges, lunar mountains might be seen in silhovette. The fourth contact of Venlis should be fairly easy to observe due to the fact that the Moon's edge wili probably appear sharper than Venus' limb. During the partial occultation, which wil? last about 9 minutes, Venus can be seen sliding along the Moon. At central occultation, for a period of around 2 minutes, Venus will disappear completely, and may possibly reappear a few thes in lunar valleys. This event will occur on the bright timb 1° from the cusp, but at 6%-sunlit, most events will occur against dark features, or against a thin cusp.

A major expedition is planned to 05seo, Wisconsin for the event. Interested observers will meet at the Osseo Central Park in downtown Osseo. Most observers will be set up on county roads, which are close to I-94. Pore information can be had by contacting Mr. Fox (8301 Isle Ave. S., Cottage Grove, Mn. 55076, 612/459-6360) no later than July loth.

HE DOUBE STAKS by David 5 . Dunham The tacle on pase 5 lists double stars, or additional components of known systems, discovered during Lunary occultations since 1971 Jan. I, and additions or corrections (show by * after the SAO number) to the Univ. of Texas special double star list of 1974 May 9, copies of which were circulated to meny observers. An updated version of the full list wit be sent to all subsoribers, and at receiving U.S.N. O tota. o., grazing occultation predictions, in late september, so please send ne any of your own discoveries, on those discovered by others, to make the uodater list as comprehensive as possible. New ifscoteries should be reported promed so that more observations can be cacaned. Due to the motion of the nodes of the foon's orbit, favorable occultations of a star may be visibie anmere on the Earth's surface for only a fey more months. and not again for almost 13 years. 0issemination os infomation about newly discovered on suspected couble stars is one of the most important functions of this news?etter. Under M (methodi), ? = photoelectric total occuitation, $V=$ yisuet total accultation, $\mathcal{G}=$ visuà grezing occultation, $C=$ correction, $S=$ composite spectrum. Under N (new double stâ code), $V=$ close collibe, separation greater than .01, $u=$ close double, sep. less than U0i: $K=$ probably V or $U ; K=$ possibily y, but constuerable dowb; $0=v i s u a l$ double, omit detcmined; $A=$ visua? doub?e noted by Atcken; w = triple, $U+A ; T=$ triple, $V+A ; B=$ tripie, $V+V$ or $+V$. 附? and HAEQ are the magntitudes of the primary and secodary, respectively. SEP and PA are the separation (in arc seconds) and position angle (in degrees) of the secondary with respect to the primary, respectiveiy. MAG3, SEP3 and PA3 refer to a third component, if any. No entry under PA means it is cnanging (significant orbital motion) or has not been determined (spectroscopic or spectrum binary). of course, occultations only
(cont. on pg. 6)

measure the separation projected on to the P.A. of the event. A,D.S. refers to the number in Altiken's double star catalog. Several stars with composite spectra, not included in the May 9th list, are listed here. The components of such stars wili usually be of comparable brightness, while their separations are unknown, but can be expected generally in the range $0: 01$ to 0.2 (0.05 has been arbitrarily selected for SEP).

Visual observers will not normally notice the duplicity of code U doubles, since the diffraction patterns of the two components will interfere, precluding definite "step" events. Visual observers should watch for disappearances or reappearances in distinct steps to signal the discovery of a close double. Continuous fades or brightenings are often due to diffraction of the star's light at the Moon's edge, a phenomenon noticeable at many favorable grazing occu?tations. Atmospheric seeing and, for faint stars, irradiation may also have an effect. When reporting the discovery of a double, give the date and P.A. of the occultation, the star's Z.C., SAO, or U.S.N.O. reference no., and an estimate of the time between steps and the brightness of the secondary relative to either the primary or the total light (primary plus sec-
ondary). Besides more double star observations (two or more observations of the same star usually permit a uniocue determination of sep. and P.A.)., negative observations under good conditions of "probable" or "possibie" doubles are also welcome.

In. Mon. Not. A.S.S.A., Vol. 32, p. 42, M. D. Overieek reports fadings seen during occu?tations of 6.9 mag. Z.C. 1152 (SAO 79558) at P.A. 87°, and SAO 118454 at P.A. 116°, indicating probable duplicity (these will be added to the special doubles list). He also notes 3 Pleiades stars, which will be reported after David Evans and Paul Bartholdi complete a review of all available date on these stars (the next Pleiade \quad ultation will occur in 1986). He also reports visual observations of a light source extinguished in steps separated by from 0.01 to ? second. They found it difficult to distinguish a stepped disappearance from a gradual fade when the time interva? was iess than $0.2 \mathrm{sec}-$ ond. Also, he said: "It can be stated with reasonable confidence that the phenomenon is not à subjective effect." I might add that for total occultations more than 40° of P.A. away from being a graze, a fade event would more likety be due to duplicity than to diffraction, whereas the reverse would be true during a graze.

GRAZES OBSERVED IN 1974 REPORTED TO THE UGIVERSITY OF TEXAS

The first 2 columns of the table ($p .7$) give the Universal Time month and day numbers. Star numbers are usually Z.C. (4 digits) or U.S.N.O. reference (Z) numbers. The B.D. number is given for the non-SAO star observed March 31st. In case of ciose double stars, the combined magnitude is given. Under the next column, the percent of the Moon's apparent disk sunlit, + signifies waxing, - waning phases. Next is the cusp angle in degrees from the north or south cusp. Only the number of stations reporting useful data (including possibly one station reporting no oc-
cultation) is given under \# Sta. Next is the number of timings, which counts /2 for "possibly spurious" events and nothing for "most likely spurious" ones. Only contact timings (event codes 1-6) are counted (a " 9 " event would be counted if the time for the implied event can be inferred to within about 2 seconds). Totals involving halves are rounded up. CC is the best observing condition code (numerically highest) reported by any observer in the expedition. Ap cm gives the aperture, in centimeters, of the smallest
(Cont. on pg. 8)

	974		\%				Ap		
Mo	Dy	Number	Mag Sni		Location Sta	a Tm	C cm	Organizer	St WA b
1	4	0399	$5.775+$	6N	El Cura,Gue.,Mex. 2	213	713	David Dunham	3s 10-50
	13	1713	5.8 69-	5 S	Bryn Mawr, Calif. 2	26	11	Bob Fischer	
1	13	1713	5.8 69-	S	Midway, Arizona 1	18	915	Richard Nol thenius	2 N
1	13	Z11481	8.769 -	S	Lukeville, Ariz. 1	11	515	Richard Nol thenius	
1	15	1944	5.6 48-	105	Rochelle, Texas 5	526	8	Terry Boone	4S189 63
1	28	3501	$5.318+$	25	Maiden Rock, Wis. 2	22	725	James Fox	C8N175-64
1	29	0077	$7.927+$	25	Hesperia, Calif. 3	35	13	Bob Fischer	CS
1	29	Z00508	$8.728+$		Tucson, Arizona 7	14	615	Richard Nolthenius	
1	31	Z01989	$9.148+$	-1S	Sahuarita, Ariz.	1	715	R. Noithenius	C20177-76
2	1	202722	$8.860+$	9 N	Tucson, Arizona	14	915	Richard Nolthenius	
2	1	Z02763	$8.860+$	11 N	Tucson, Arizona	5	615	Richard Nolthenius	
2	3	0789	$6.979+$	10 N	Florida City, Fla. 1	11		Harold Povenmire	
2	4	205958	$8.389+$	12 N	Uhland, Texas 1	12	525	David Dunham	1N 1311
2	27	0296	$7.722+$		Neoga, Illinois 1	19	820	John Phelps, Jr.	2 N
3	1	203276	$8.042+$	9 N	Pearsall, Texas	246	610	Steven Griffith	S?11-26
3	1	0582	5.8 43+	10 N	Ayoca, Nebraska 2		725	David Harvey	$5 \mathrm{~N} 10-24$
3	,	0582	$5.843+$	10N	Bethany, Missouri 2	26	815	Robert Sandy	5 N 10-24
3	1	203519	8.3 47+		Canberra, Austrl. 4	414	831	David Herald	0
3	4	Z07021	$7.877+$	14N	Satellite Bch.,Fl.]	12		Harold Povenmire	
3	11	1967	5.789 -		Tortolita Mts.,Az. 1	12	515	Richard Nolthenius	
3	16	Z18233	9.0 44-		Oracle, Arizona	1	615	Richard Nol thenius	
	17	2779	$3.934-$	2 S	San Carlos, Ariz.	6	715	Richard Nolthenius	c182-17
	17	2779	$3.934-$	25	Demming, N.Mexico	2	610	Warren Odom	C182-17
	17	2779	$3.934-$	25	Van Horn, Texas 6	621	66	David Dunham	C5N181-17
3	28	202960	$7.818+$	11 N	Houston, Texas 2	218	815	Paul Maley	$3 S^{11-50}$
3	29	203831	$9.028+$		Marana, Arizona 1	17	815	Richard Noithenius	
3	30	204661	$8.938+$	11 N	Satellite Bch. Fl. 1	12	41	Harold Povenmire	
3	30	Z04899	$7.539+$	15N	Moore, Texas 1	10	815	Steven Griffith	168
3	30	Z04899	$7.539+$	15 N	Moore, Texas 6	622		David Dunham	0168
3		+219354	$9.450+$		Satellite Bch., Fl. 1	11		Harold Povenmire	
,	,	207904	$9.163+$	14N	Mt. Lemmon, Ariz.	9	615	Richard Nolthenius	
4	2	Z08729	$8.072+$	12 N	Mims, Florida	4	15	Harold Povenmire	1249
4	3	1429	$6.883+$	19N	W.Lake Hills, Tex. 8	829	725	David Dunham	1 N 1662
4		Z09755	$8.783+$	19 N	Tucson, Arizona	2	415	R. Notthenius	185
4	4	210426	$8.591+$	20 N	Cedar Valley, Tex.	1	525	David Dunham	2S 1467
	10	2290	$2.587-$	$-4 N$	Turnersville,Tex.	8	615	David Dunham	C4N 428
4	16	222780	$8.933-$	8N	Cortaro, Arizona	4	815	Richard NoIthenius	
	25	203592	$8.88{ }^{+}$	16 N	Daytona Bch.,Fla.	2	15	Harold Povenmire	15-13
4	25	204433	$8.616+$	14 N	Creedmoor, Texas 4	419	625	David Dunham	IS 166
4	26	Z04436	$7.716+$	12N	McLean, Illinois	10	815	Homer DaBoll	2S 158
4	27	205933	$8.824+$	15N	Fellsmere, Fla.	4	15	Harold Povenmire	1720
	27	205999	$8.825+$	14N	Webberville, Tex. 1	14	525	David Dunham	4 N 1721
	11	2797	3.078 -	45	White City, Fla.	1		Harold Povenmire	C5N182-24
	29	1587	$6.056+$	12 N	Yates Center,Kan. 5	510		Richard Wilds	7 N 1174
	29	1587	$6.056+$	10N	San Antonio, Fla. 6	627	720	Thomas Campbell	6 N 974

$61805994.54-5 N$ Limestone,Florida 312720 Thomas Campbell 358-14
telescope in the expedition which achieved the observing code listed under CC (in case more than one observer achieved $i t)$. St gives the estimated shift from the U.S.N.O. prediction (without applying any correction based on the latitude libration), in tenths of a second of arc on the predicted profile. N and S indicate whether the observed graze shadow passed north or south of the predicted one. C indicates the Cassini region, where Watts' Timb data are not available. WA is the Wacts angle of central graze, and b is the latitude libration, in tenths of a degree (e.g., "-50" signifies -5.0). For a given star, the difference between the WA and the P.A. of graze changes only slightly. For comparison purposes, remember that CC depends on twilight, clouds, and other factors not indicated in the table. For example, clouds and strong wind had a much more adverse effect on the April 10th graze than the Moon's phase or the fact that the graze was on the bright side. When expedition leaders report their observations, it would be helpful if they reported all quantities listed in the table, in addition to the ones on the forms. A copy of the predicted profile sometimes helps. Report SAO and Z numbers for non-Z.C. stars.

Observations of grazes of the same star during two or more months can be especially helpful in studies of the Moon's shape and motion, since the uncertainty in the star's position can be largely removed. So if you see a graze of a star listed in the table in your upcoming predictions, try to assign the event special priority. As mentioned in the section on double stars, there may be opportunities to observe occultations of a particular star for only a few more months, and then not again for many years, so prompt reporting of observations is encouraged. Also, observers of upcoming grazes of a previously-observed
star mignt be alerted to a significant star position shift and thereby improve their prediction. This works better when the WA's of the observed and predicted graze are closer to each other. Grazes of Z.C. 0976 and of Z 203626 have been observed this year, but complete reports are not yet available (they will be listed in the next issue). Eventually, I plan to distribute a list of the numbers of all stars, grazes of which hãve been observed.

For Z09755 on April 3rd, the AGK3 position of the star is $1: 6$ north of the SAO position, largely explaining the large shift osserved.

Only two of the grazes listed were observed outside of the U.S.A., but reports of some non-U.S. grazes during the time period will aimost certainly be received later. Subsequent issues of this newsletter will list all grazes observed after December 31, 1973, reports of which are received at the University of Texas after the previous list was prepared.

The most successful expedition (number of stations and timings) in the current list was for a marginal graze involving Z.C. 1429 on April 3rd.

There are no "top ten" grazes in the current list, such as the one for Z.C. 1489 last 0ctober 21st, where 4 expeditions totaling 35 stations, spread from California to Texas, made 173 timings.

Richard Nolthenius observed 19 grazes during the period January thru April, 1974 (No attempts were clouded-out!), most of which are included in the list.

papers about occultations published since january 1, 1974

Compiled by David W. Dunham

H. A. Abt and S. G. Levy, "Period Variation of the Cepheid Zeta Geminorum", Ap. J. 188, L75. A new ephemeris of radial velocities for the star is derived to aid analysis of any photoelectric observations of occultations of the star.
W. I. Beavers and J. J. Eitter, "Lunar Occultation Stellar Diameter Measurements", Bull. Am. Astron. Soc, 6, 216 . Results of their routine photoelectric observations include the following diameters: B.D. $+23^{\circ}$ 1518, ".0028; R Gem., ".0037; v Cap., "0028 in blue light, "0036 in red; ε Gem., ".0018; and B.D. $+24^{\circ} 571$, ."0078.
D. W. Dunham, D. S. Evans, and W. H. Sandmann, "The Angular Diameter of 87 Leonis", Astron. J. 79, 483. !.0041 was found for a cosine law (fully darkened to the 1 imb) of darkening; the spectral type is K4III.
G. Hilaire, "Observations of Occultations of Stars by the Moon", Astron. and Astroph. Supp. Ser. 13, 395. Over 200 visual timings made at Besançon Observatory between Jan. 1969 and Sept. 1972 are reported.
J. T. McGraw and J. R. P. Angel, "An Angular Diameter and Effective Temperature for V Cancri from an Occultation Observation", Astron. J. 79, 485. At visual magnitude 11.5, near minimum light, this is the faintest star ever to yield a measurable angular diameter (!.0028 for a cosine law of darkening). The observation was made with the 2.08-m telescope at McDonald Observatory. V Cancri is an S-type Mira variable.
G. Reed, F. J. Howell, and T. A. Clark, "Extended Glow Preceding Reappearance of Saturn during a Lunar Occultation", Nature 247, 447. This
observation made about 1.5 sec . before 3rd ring contact at Ardrossen, Alberta, Canada, on 0ct. 17, 1973, indicates an extension of faint material possibly 5000 km beyond Saturn's rings. A similar observation was made by Brock during a graze of Jupiter in 1968. See section on partia? occultations, page 1, column 2.
J. L. Sowers, "Lunar Occultation Light Curves Perturbed by Random Limb Irregularities", Astron. J. 79, 321. The profile of the Junar limb is approximated by a sequence oi uniformly random perturbations from the mean edge over a $40-\mathrm{m}$ length. Conclusions are drawn as to the effects of this on photoelectric occultation measurements. The points raised for determination of stellar angular diameters are worth considering, but highquality photoelectric traces of many essentially point~source stars and lunar exploration show that the problem is not severe.
S. D. Tremaine, E. J. Groth, and M. R. Neison, "Observation of a Lunar Occultation of δ Geminorum", Astron. J. 79,649. They find that $\delta \mathrm{Gem}$ A has no secondary component brighter than 2.4 mag. fainter than the primary with separation greater than . 017 in P.A. 315°, giving strong support to recent spectroscopic studies which indicate that the star is not a spectroscopic binary.
T. C. Van Flandern, "A Determination of the Rate of Change of $\mathrm{G}^{\prime \prime}$, Bull. Am. Astron. Soc. 6, 206. A new analysis of lunar occultations from 1955-1973 using Atomic Time gives a value for the empirical part of the secu-

Tar deceleration of the Moon's mean longitude of $(-37 \pm 5) T^{2}$ (T in centuries). This differs from an earlier result principally due to the use of a numerically integrated lunar ephemeris. It also differs from other determinations which use the Sun's motion to determine uniform time, such as -21 " T^{2} from ancient Solar eclipses and $-191 T^{2}$ from meridian circle data. Hoyle has predicted that such a discrepancy will occur due to a secular decrease in the Universal Gravitational Constant G. For G not constant, the "solar motion" results (which are independent of G) must be interpreted as tida) (taken here to be $-21^{\prime \prime} T^{2}$), and the excess deceleration of $-16^{\prime \prime} T^{2}$ in the new result utilizing Atomic Time implies $G / G=(-0.9 \pm 0.3) \times 10^{-10} / \mathrm{yr}$. Support for this interpretation comes from a number of sources (geophysical evidence and cosmological theories). The B.A.A.S. note is only an abstract, not much longer than this. An article giving more details, including a slightly improved determination, OCCULTATION OF DELTA SCORPII, SEPTEMBER 21, 1974 By David W. Dunham
Saturday evening, Sept 20-21, an occultation of $2.5-m a g$ S Sco (Dschubba, ZC 2290) by a 28% sunlit Moon will be visible from much of western N. America. This will be the most spectacular occultation of a star from the U.S. in 1974. The D might be seen without optical aid, but at least binoculars are recomended. During an April occultation, Nolthenius apparently saw a 3rd mag. companion (see the list of new doubles), adding interest to the more favorable Sept. event.

A spectacular graze, occurring 11° to 13° from the south cusp on the dark side, will be visible near the southern limit, which extends from Baja California (2:31 UT) to Iowa (2:45 UT). Expeditions will probably be led from Ensenada, Baja Calif. (limit 17 mi S , Sun -11°, Moon + 23°, R. Mitchell ldr; might be joined by southern Californians); Tucson, AZ (limit 20 mi S of Phoenix, R. Nolthenius 1dr);
will be published soon.
J. Veverka, L. H. Wasserman, J. Elliot, C. Sagan, and W. Liller, "The Occultation of 3 Scorpii by Jupiter I. The Structure of the Jovian Upper Atmosphere", Astron. J. 79, 73. The light curves showed numerous sharp spikes attributable to density fluctuations in the Jovian atmosphere. Refractivity, density and temperature profiles of the Jovian atmosphere are presented. Typical temperature fluctuations amount to $2-10^{\circ} \mathrm{K}$ with vertical scales of about 10 km . The values of both temperature and temperature gradient are higher than current models predict.
J. Veverka, L. Wāssermann, and C. Sagan, "On the Upper Atmosphere of Neptune", Ap. J. 189, 569. Reanalysis of the Mt. Stromlo observations of the occultation of B.D. $-17^{\circ} 4388$ by Neptune show that the upper atmosphere is not isothermal. Local $5^{\circ}-10^{\circ} \mathrm{K}$ fluctuations some 10 km in extent are associated with the many spikes in the light curve.

Alberquerque, $N M$ (limit 12 mi N , Moon + 13°, S. Bourgeois) ; Santa Fe, NM (limit 5 mi S, W. Fellows); and Topeka, KS (limit $100 \mathrm{mi} \mathrm{N},+3^{\circ}$, R. Wilds; may be joined by R. Sandy, Kansas City, MO). With clear skies, event should be visible at very low alt. On March 17, R. Nolthenius got good timings of a graze of o Sag (ZC 2779) using a 6 -inch refl. in $A Z$; he rated observing condition as 7 , with star alt. only $+3^{\circ}$ at central graze, and Moon 34% sunlit. An expedition from Texas will join either an AZ or NM expedition.

In Mon. Not. R.A.S., vol 167, p 135, R. H. Brown et al. report observations of $\delta S \mathrm{co}$, and many others, with the intensity interferometer at Narrabri, Australia. They find that δ Sco has a companion about 1.9 mag fainter than the primary, probably referring to the companion seen by Nolthenius, but the spectroscopic companion may be involved.

